CHAPTER 11

The Mole

<u>11.1 The Mole:</u> <u>A Measurement of Matter</u>

Matter is measured in one of three ways:

- **1. Counting** (How many?)
- Weighing
 Volume

Mole

- SI unit that measures the "amount of a substance"
- A mole of a substance represents 6.02 x 10²³ representative particles of that substance.

<u>Representative Particle</u>

Refers to the species present in a substance: usually **atoms**, **molecules**, or **formula units** (lonic)

Types of Representative Particles

- <u>Atoms</u>: Fe, Ag, Au, Ni, Mg Not bonded to anything 7 atoms exist <u>only</u> as molecules.
- <u>Molecules</u>: H₂O, SO₂, CO₂, SCl₆ ★ Diatomic: H₂, O₂, N₂, Cl₂, F₂, Br₂, I₂
- <u>Formula Units</u>: Ionic Compounds CaCl₂, MgSO₄, Al(OH)₃, Pb(CO₃)₂
- <u>Ions</u>: Ca²⁺, Br, Al³⁺

One mole of ...

- $Fe = 6.02 \times 10^{23} \text{ atoms}$
- $H_2O = 6.02 \times 10^{23}$ molecules
- $CaCl_2 = 6.02 \times 10^{23}$ formula units
- $Al^{3+}=6.02 \times 10^{23}$ ions

Comparing Atoms		
1 mole Li	1 mol Fe	1 mol Ca
6.02×10^{23} atoms	6.02 x 10 ²³ atoms	6.02 x 10 ²³ atoms
gam = 7g	gam = 56g	gam = 40g

Comparing Molecules		
1 mol H ₂ O	1 mol H ₂ O ₂	
6.02×10^{23} molecules	6.02×10^{23} molecules	
H:	H:	
O:	O:	
gmm = 18g	gmm = 34g	

1 mol CaCl ₂	1 mol Al ₂ (CO ₃) ₃
6.02×10^{23} form units	6.02 x 10^{23} form units
Ca: Cl:	Al: C: O:
gfm = 111-g	gfm = 234g

11.2 Mass of a Mole of an Element

- Mass of one mole of any element is the molar mass.
- <u>Gram atomic mass</u>: mass of one mole of atoms of an element.

Mass of a Mole of a Compound

Molar Mass: Mass of one mole

- Expressed in g/mol.
- <u>Gram formula mass</u>: the mass of one mole of an ionic compound.
- <u>Gram molecular mass</u>: the mass of one mole of a molecule.

Dinitrogen pentoxide	Cobalt (II) nitrate
6.02 x 10 ²³ molecules	6.02 x 10 ²³ form units
N: O:	Co: N: O:

Conversion Factors		
Moles ←→	Rep Particles	
<u>1 mole</u> 6.02 x 10 ²³	$\frac{6.02 \text{ x } 10^{23}}{1 \text{ mole}}$	

<u>Converting (Representative Particles → Moles)</u>

8.72 x 10²³ atoms of Mg

3.046 x 10²⁴ molecules of H₂O

5.13 x 10²² formula units of CaCl₂

11.3 Mole-Mass and Mole-Volume Relationships

- You can use the number of moles to determine the volume or mass of an atom, molecule, or ionic compound.
- You can also use the volume or mass to determine the number of moles in an atom, molecule, or ionic compound.

Mole-Mass Relationship

- The molar mass of an atom, molecule, or ionic compound is used to convert moles of a substance into grams.
- The molar mass is also used to convert grams into moles.
- Correctly use gmm, gam, or gfm for molar mass.

Converting (Moles into Mass)

3.504 mol of NaCl

5.13 mol of gold

7.28 mol of CO₂

Converting (Mass into Moles)

39.2 grams of NH₃

157.8 grams of $MgCl_2$

91.79 grams of Calcium

Molar Mass

- Mass of 1-mole of a substance
- Different for every substance
- Must use correct formula and the periodic table to determine the molar mass.
- The molar mass does not change!

Mole-Volume Relationship

- <u>STP</u>: (*This is very important*!)
- Standard Temperature & Pressure
- Temperature: 0° C or 32° F
- Pressure: 101.3 kPa or 1 atm

Molar Volume

- Volume of 1-mole of a substance
- Gases only
- 22.4 L per 1 mole
- The molar volume is the same for all gases @ STP

Molar Volume

• At STP, 1 mole of any gas occupies a volume of 22.4 L.

Ø

- 22.4 L is known as the molar volume of a gas.
- 22.4 L contains Avogadro's number of particles.

Convert (Volume into Moles) 8.06 L of Fluorine @ STP 1.49 L of CO2 @ STP Volume Rep. Particles Atoms-Molecules-Form units

GAS DENSITY AND THE MOLAR MASS

- The density of a gas is usually measured in the units g/L.
- Remember that molar mass is measured in g/mol.
- You must convert $L \rightarrow$ moles.

Converting (Density of gas into Molar Mass)

1.964 g/L of CO₂ @ STP.

2.857 g/L of SO₂ @ STP.

Sample Problems

WWhat is the density of NH₃ at STP?

- Determine the molar mass of NH₃. (17g/mol)
- Convert the molar mass into density

Sample Problem

An unknown gas is 8.20-grams & occupies 4.00-liters @ STP. Is the sample N₂O, NO, NO₂, N₂O₅ or N₂O₃?

- Determine the density in g/L.
- Convert density into molar mass.
- Which sample has the matching molar mass.

Sample Problem

Given 250-mL of gas with mass of 0.335-g. Is the sample N_2O, NO, NO_2 N_2O_5 or N_2O_3?

- Determine the density in g/L.
- Convert density into molar mass.
- Which sample has the matching molar mass?

Determining Ions and Atoms 1. How many formula units in 1 mole of Fe₂O₃? • How many "Fe" ions are in 1 formula unit? • How many "O" ions are in 1 formula unit? 2. How many molecules in 1 mole of H₂O? • How many "H" atoms are in 1 molecule? • How many "O" atoms are in 1 molecule?

Sample Problems

How many hydrogen atoms are there in 3.2 mol of water? H_2O

Moles into molecules into atoms

Sample Problems

How many oxygen ions are there in 0.674 mol of Iron (III) oxide? Fe_2O_3 $\,$

• Moles into formula units into ions

11.4 Percent Composition and Chemical Formulas

- <u>Percent Composition</u>: the percent by mass of each element in a compound.
- The percentages of each element should add up to 100%.
- Used to determine the formula of new substances.

Determining Percent Composition

• What is the percent composition of each element in the compound CaCO₃?

Ca: 1 x 40 = 40	
C: 1 x 12 = 12 O: 3 x 16 = 48	
Molar Mass = 100	

% Ca: 40/100 x 100 = 40%

_____% C:12/100 x 100 = 12% 100 % O:48/100 x 100 = 48%

Sample Problem

What is the mass of calcium in 6.51 grams of calcium carbonate?

% Ca: 40%

% C: 12%

% O: 48%

Sample Problem

• What is the mass of sodium in 4.6 grams of sodium chloride?

% Na: 39.3%

% CI: 60.7%

EMPIRICAL FORMULAS

• The empirical formula gives the lowest whole number ratio of the atoms of the elements in a compound.

Ionic Compounds (Ionic Bonds)	Molecular Compounds (Covalent Bonds)
Always Empirical	* NOT ALWAYS EMPIRICAL

Determining Empirical Formula

- 1. Percent Composition
- 2. Assume 100 g (Use %)
- 3. Change to Moles (No scientific notation)
- 4. Divide by smallest mole
- 5. Change to whole number
- 6. Assign to elements

Determining Empirical Formula

• Carbon = 79.9%, Hydrogen = 20.1%

Determining Empirical Formula

• Hg = 67.6%, S = 10.8%, O = 21.6%

Determining Empirical Formula

• Oxygen = 74.1%, Nitrogen = 25.9%

MOLECULAR FORMULAS

- To calculate the molecular formula, you need the empirical formula mass and the molar mass of the compound.
- Divide the mass of the compound by the mass of the empirical formula.
- Multiply that number by each number of atoms in the empirical formula.

MOLECULAR FORMULAS

- The molecular formula can be the same as the empirical formula.
- Several compounds can have the same empirical formula.
- The empirical formula cannot be greater than a molecular formula.

Determining Molecular Formulas

- Empirical Formula = CH₄N
- Molar mass = 60.0 g/mol

Determining Molecular Formulas

- Empirical Formula = CH₃
- Molar mass is 30.0 g/mol

Determining Molecular Formulas

• A compound consists of 58.8% C, 9.8% H, & 31.4% O. Determine the empirical formula for the compound and then the molecular formula for a compound with a molar mass of 102.0 g.

<u>11.5 Hydrates</u>

• Water molecules are an integral part of the crystal structure of many substances.

- The water in a crystal is called the **water** of hydration or water of crystallization
- Ex. $CuSO_4$ · $5H_2O$

• If a hydrate has a vapor pressure higher than that of the water vapor in air, the hydrate will <u>effloresce</u> by losing the water of hydration...becoming Anhydrous.

Anhydrous Salt: a hydrate that has lost water

• Salts and other compounds that remove moisture from air are said to be **hygroscopic**

- Hygroscopic substances are used as drying agents, or <u>desiccants.</u>
- They have Less vapor pressure in the compound than in the air.
- These <u>deliquescent</u> compounds remove sufficient water from the air <u>to dissolve</u> completely and form solutions

How many grams of CoCl₂ will remain if 54.0-grams of the hydrate CoCl₂ • 6H₂O is heated until only the anhydrous salt remains?

%CoCl₂: 54.6 % %H₂O:45.4 % After heating 5.0-grams of a hydrate, 3.9-grams of anhydrous salt remained. What was the percentage of water in the hydrate?