CHAPTER 11 The Mole

Mole

- SI unit that measures the "amount of a substance"
- A mole of a substance represents 6.02×10^{23} representative particles of that substance.

Types of Representative Particles

- Atoms: $\mathrm{Fe}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Ni}, \mathrm{Mg}$ Not bonded to anything

7 atoms exist only as molecules.

- Molecules: $\mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}, \mathrm{CO}_{2}, \mathrm{SCl}_{6}$ \& Diatomic: $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{Cl}_{2}, \mathrm{~F}_{2}, \mathrm{Br}_{2}, \mathrm{I}_{2}$
- Formula Units: Ionic Compounds $\mathrm{CaCl}_{2}, \mathrm{MgSO}_{4}, \mathrm{Al}(\mathrm{OH})_{3}, \mathrm{~Pb}\left(\mathrm{CO}_{3}\right)_{2}$
- Ions: $\mathrm{Ca}^{2+}, \mathrm{Br}, \mathrm{Al}^{3+}$

Representative Particle

Refers to the species present in a substance: usually atoms, molecules, or formula units
(Ionic)

One mole of ...

- $\mathrm{Fe}=6.02 \times 10^{23}$ atoms
- $\mathrm{H}_{2} \mathrm{O}=6.02 \times 10^{23}$ molecules
- $\mathrm{CaCl}_{2}=6.02 \times 10^{23}$ formula units
- $\mathrm{Al}^{3+=} 6.02 \times 10^{23}$ ions

Hon Chem 11.notebook

Comparing Atoms		
1 mole Li 1 mol Fe 1 mol Ca 6.02×10^{23} atoms 6.02×10^{23} atoms 6.02×10^{23} atoms $9 a m=7 \mathrm{~g}$ $\mathrm{gam}=56 \mathrm{~g}$ $\mathrm{gam}=40 \mathrm{~g}$		

Comparing Molecules	
$\mathbf{1 ~ m o l ~ H} \mathbf{~ H} \mathbf{O}$	$\mathbf{1 ~ m o l ~} \mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$
$6.02 \times \quad 10^{23}$ molecules	$6.02 \times \quad 10^{23}$ molecules
$\mathrm{H}:$	$\mathrm{H}:$
$\mathrm{O}:$	$\mathrm{O}:$
$\mathrm{gmm}=18 \mathrm{~g}$	$\mathrm{gmm}=34 \mathrm{~g}$

11.2 Mass of a Mole of an Element

- Mass of one mole of any element is the molar mass.
- Gram atomic mass: mass of one mole of atoms of an element.

Mass of a Mole of a Compound

स Molar Mass: Mass of one mole

- Expressed in $\mathbf{g} / \mathbf{m o l}$.
- Gram formula mass: the mass of one mole of an ionic compound.
- Gram molecular mass: the mass of one mole of a molecule.

Dinitrogen pentoxide	Cobalt (II) nitrate
$\mathbf{6 . 0 2} \times 10^{23}$ molecules	$6.02 \times \mathbf{1 0}^{23}$ form units
$\mathrm{N}:$	$\mathrm{Co}:$
$\mathrm{O}:$	$\mathrm{N}:$
$\mathrm{O}:$	

Conversion Factors
Moles $\longleftrightarrow \quad$ Rep Particles
$\frac{1 \text { mole }}{6.02 \times 10^{23}} O \frac{6.02 \times 10^{23}}{1 \text { mole }}$

Converting (Representative Particles \rightarrow Moles)

8.72×10^{23} atoms of $\mathbf{M g}$
3.046×10^{24} molecules of $\mathbf{H}_{\mathbf{2}} \mathrm{O}$
5.13×10^{22} formula units of CaCl_{2}

Converting (Moles \rightarrow Representative Particles)

$1.22 \mathbf{~ m o l ~ o f ~} \mathrm{Fe}$
$4.03 \times 10^{2} \mathbf{~ m o l ~ o f ~} \mathrm{CO}_{2}$
2.71 mol of MgSO_{4}

11.3 Mole-Mass and Mole-Volume Relationships

- You can use the number of moles to determine the volume or mass of an atom, molecule, or ionic compound.
- You can also use the volume or mass to determine the number of moles in an atom, molecule, or ionic compound.

Mole-Mass Relationship

- The molar mass of an atom, molecule, or ionic compound is used to convert moles of a substance into grams.
- The molar mass is also used to convert grams into moles.
- Correctly use gmm, gam, or gfm for molar mass.

Converting (Moles into Mass)
3.504 mol of NaCl
5.13 mol of gold
7.28 mol of CO_{2}

Molar Mass

- Mass of 1-mole of a substance
- Different for every substance
- Must use correct formula and the periodic
table to determine the molar mass.
- The molar mass does not change!

Converting (Mass into Moles)
39.2 grams of NH_{3}
$\mathbf{1 5 7 . 8}$ grams of MgCl_{2}
91.79 grams of Calcium

Mole-Volume Relationship

- STP: (This is very important!)
- Standard Temperature \& Pressure
- Temperature: $0^{\circ} \mathrm{C}$ or $32^{\circ} \mathrm{F}$
- Pressure: 101.3 kPa or 1 atm

Molar Volume

- Volume of 1-mole of a substance
- Gases only
- 22.4 - L per 1 mole
- The molar volume is the same for all gases @ STP

- At STP, 1 mole of any gas occupies a volume of 22.4 L .
- 22.4 L is known as the molar volume of a gas.
- 22.4 L contains Avogadro's number of particles.

Convert (Moles into Volume)

$0.603 \mathrm{~mol} \mathrm{SO} \mathbf{2} @$ STP
1.25 mol of oxygen @ STP

GAS DENSITY AND THE MOLAR MASS

- The density of a gas is usually measured in the units g / L.
- Remember that molar mass is measured in $\mathrm{g} / \mathrm{mol}$.
- You must convert $\mathrm{L} \rightarrow$ moles.

Sample Problems

WWhat is the density of NH_{3} at STP?

- Determine the molar mass of NH_{3}. $(17 \mathrm{~g} / \mathrm{mol})$
- Convert the molar mass into density

Convert@STP

57.9 L of Chlorine into Mass

18.7 L of $\mathrm{C}_{2} \mathrm{H}_{6}$ into Rep. Particles

Converting (Density of gas into Molar Mass)

$1.964 \mathrm{~g} / \mathrm{L}$ of CO_{2} @ STP.
2.857 g/L of SO_{2} @ STP.

Sample Problem

An unknown gas is 8.20 -grams $\&$ occupies 4.00 -liters @ STP. Is the sample $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{NO}_{2}$, $\mathrm{N}_{2} \mathrm{O}_{5}$ or $\mathrm{N}_{2} \mathrm{O}_{3}$?

- Determine the density in g/L.
- Convert density into molar mass.
- Which sample has the matching molar mass.

Sample Problem

Given $250-\mathrm{mL}$ of gas with mass of $0.335-\mathrm{g}$. Is the sample $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}, \mathrm{NO}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}$ or $\mathrm{N}_{2} \mathrm{O}_{3}$?

- Determine the density in g/L.
- Convert density into molar mass.
- Which sample has the matching molar mass?
$\mathrm{N}_{2} \mathrm{O}=44-\mathrm{g}$
$\mathrm{NO}=30-\mathrm{g}$
$\mathrm{NO}_{2}=46-\mathrm{g}$
$\mathrm{N}_{2} \mathrm{O}_{3}=76-\mathrm{g}$
$\mathrm{N}_{2} \mathrm{O}_{5}=108-\mathrm{g}$

Sample Problems

How many hydrogen atoms are there in 3.2 mol of water? $\mathrm{H}_{\mathbf{2}} \mathrm{O}$

- Moles into molecules into atoms

11.4 Percent Composition and Chemical Formulas

- Percent Composition: the percent by mass of each element in a compound.
- The percentages of each element should add up to 100%.
- Used to determine the formula of new substances.

Determining Ions and Atoms

1. How many formula units in 1 mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$? \qquad

- How many "Fe" ions are in 1 formula unit? \qquad
- How many " 0 " ions are in 1 formula unit? \qquad

2. How many molecules in 1 mole of $\mathrm{H}_{2} \mathrm{O}$? \qquad

- How many " H " atoms are in 1 molecule? \qquad
- How many " O " atoms are in 1 molecule? \qquad

Sample Problems

How many oxygen ions are there in 0.674 mol of Iron (III) oxide? $\mathrm{Fe}_{2} \mathrm{O}_{3}$

- Moles into formula units into ions

Determining Percent Composition

- What is the percent composition of each element in the compound CaCO_{3} ?

```
Ca: 1 x 40=40
C: \(1 \times 12=12\)
O: \(3 \times 16=48\)
Molar Mass \(=100\)
```

$\%$ Ca: $40 / 100 \times 100=40 \%$
\% C: $12 / 100 \times 100=12 \%$
$\% ~ O: 48 / 100 \times 100=48 \%$

Determining Percent Composition

- What is the percent composition of each element in the compound CO_{2} ?

$$
\begin{array}{ll}
\text { C: } 1 \times 12=12 \\
0: 2 \times 16=32
\end{array} \quad \% C: 12 / 44 \times 100=\underline{27.3 \%}
$$

Sample Problem

What is the mass of calcium in 6.51 grams of calcium carbonate?
\% Ca: 40\%
\% C: 12\%
\% O: 48\%

EMPIRICAL FORMULAS

- The empirical formula gives the lowest whole number ratio of the atoms of the elements in a compound.

Determining Empirical Formula

- Carbon $=79.9 \%$, Hydrogen $=\mathbf{2 0 . 1} \%$

Determining Empirical Formula

- Oxygen $=74.1 \%$, Nitrogen $=25.9 \%$

Determining Empirical Formula

1. Percent Composition
2. Assume 100 g (Use \%)
3. Change to Moles (No scientific notation)
4. Divide by smallest mole
5. Change to whole number
6. Assign to elements

Determining Empirical Formula

- $\mathrm{Hg}=\mathbf{6 7 . 6 \%}, \mathrm{S}=\mathbf{1 0 . 8} \%, \mathrm{O}=\mathbf{2 1 . 6 \%}$

MOLECULAR FORMULAS

- To calculate the molecular formula, you need the empirical formula mass and the molar mass of the compound.
- Divide the mass of the compound by the mass of the empirical formula.
- Multiply that number by each number of atoms in the empirical formula.

MOLECULAR FORMULAS

- The molecular formula can be the same as the empirical formula.
- Several compounds can have the same empirical formula.
- The empirical formula cannot be greater than a molecular formula.

Determining Molecular Formulas

- Empirical Formula $=\mathbf{C H}_{3}$
- Molar mass is $\mathbf{3 0 . 0} \mathbf{g} / \mathbf{m o l}$

11.5 Hydrates

- Water molecules are an integral part of the crystal structure of many substances.
- The water in a crystal is called the water of hydration or water of crystallization
- Ex. $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Determining Molecular Formulas

- Empirical Formula $=\mathrm{CH}_{4} \mathbf{N}$
- Molar mass $=\mathbf{6 0 . 0} \mathbf{~ g} / \mathrm{mol}$

Determining Molecular Formulas

- A compound consists of $58.8 \% \mathrm{C}, \mathbf{9 . 8 \%} \mathbf{H}, \boldsymbol{\&} \quad 31.4 \% \mathrm{O}$. Determine the empirical formula for the compound and then the molecular formula for a compound with a molar mass of 102.0 g .
- If a hydrate has a vapor pressure higher than that of the water vapor in air, the hydrate will effloresce by losing the water of hydration...becoming Anhydrous.

Anhydrous Salt: a hydrate that has lost water

- Salts and other compounds that remove moisture from air are said to be hygroscopic

Hon Chem 11.notebook

- Hygroscopic substances are used as drying agents, or desiccants.
- They have Less vapor pressure in the compound than in the air.
- These deliquescent compounds remove sufficient water from the air to dissolve completely and form solutions

How many grams of CoCl_{2} will remain if

 54.0 -grams of the hydrate $\mathrm{CoCl}_{2} \bullet 6 \mathrm{H}_{2} \mathrm{O}$ is heated until only the anhydrous salt remains?```
What is the percentage of water in the
hydrate (}\mp@subsup{\mathbf{COCl}}{2}{}\mp@subsup{\mathbf{06H}}{\mathbf{2}}{\mathbf{O}}\mathrm{ O
Co: 1\times59=59-grams (130 grams
CoCl}2:\frac{130}{238}\times10
 H2O:}\frac{108}{238}\times10
 Total Mass of Hydrate:
 %CoCl2:54.6 %
 %H2O:45.4 %
```


## After heating 5.0-grams of a hydrate, 3.9-grams of anhydrous salt remained. What was the percentage of water in the hydrate?

