

12.1 Using Everyday Equations

- Stoichiometry is the calculation of quantities using ٠ different substances in chemical equations.
- Based on the Law of Conservation of Mass. •

* The balanced equation gives the ratios for the reactants and products. * 1 mole of Mg reacts with 2 moles of HCl * 1 mole of MgCl₂ and 1 mole of H₂ are produced

$Mg(s) + 2HCI(aq) \longrightarrow MgCI_2(aq) + H_2(g)$

- How many moles of HCl are needed to react 2 moles of Mg?
- How many moles of H₂ are produced if 6 moles of HCl reacts?
- How much Magnesium is needed to produce 7.6 moles of MgCl₂?

Chemists use balanced chemical equations as a basis to calculate how much reactant is needed or product is formed in a reaction.

Ratios in chemical equations

 $4Fe(s) + 3O_2(g) \longrightarrow 2Fe_2O_3(s)$

What are the possible mole ratios?

\mathbf{A}	$N_2 + 3H_2 \longrightarrow 2NH_3$		
	What is conserved in a Chemical Reaction?		
	Atoms		Atoms
	Mass		Mass
	Moles		Moles
	Molecules		Molecules
	Volume		Volume

What is Conserved in Chemical Equations?

- Mass & atoms always!
- Volume is <u>not</u> because temp. or pressure can change.
- Moles, molecules, and formula units are <u>not</u> because atoms rearrange in a chemical reaction.

Mole Ratios in chemical equations

- Ratio between the number of moles of any two substances in a balanced equation. N_2 + $3H_2 \rightarrow \ 2NH_3$
- Can change but should be listed in lowest whole number form.
- Lowest Whole-number Ratios are used during mole to mole conversions.

Excess vs. Limiting

- What does excess mean?
- If you have excess reagent, that means you have plenty of it.

Reagent = Reactant

3 eggs + 2 cups Flour + 1 Cup sugar 🛶 1 cake

You have:

- > 12 eggs
- > 10 cups Flour
- > 8 cups sugar

Which ingredient limits the number of cakes you can bake?

Which ingredients do you have an excess of?

12.2 Stoichiometric Calculations

- Mole-Mole Calculations
- Begin with a mole quantity
- End with a mole quantity
- One step operation

$\frac{\text{Stoichiometric Pathways}}{N_2(g) + 3H_2(g)} \longrightarrow 2NH_3(g)}$ How would you convert volume of nitrogen gas into mass of nitrogen trihydride @ STP? $\frac{2n(s) + 2HCl(aq)}{2ncl_2(aq) + H_2(g)}$ How would you convert atoms of zinc into volume of hydrogen gas @ STP? How would you convert moles of Zinc into formula units of zinc chloride?

More Mole-Mole Calculations

Aluminum metal reacts with oxygen in a synthesis reaction. How many moles of product can be made from 7.8 x 10⁻¹ moles of oxygen gas?

$\frac{\text{More Mole-Mole Calculations}}{4\text{AI} + 3\text{O}_2} \implies 2\text{AI}_2\text{O}_3}$

How many moles of Al is needed to make 3.7 mol of Al₂O₃?

Mass-Mass Calculations

- 3 step process
- Molar Masses required
- 1. Change mass to moles
- 2. Mole mole ratio
- 3. Change mole to mass

12.3 Limiting Reactants

- Reactant that is used up first in a chemical reaction, or what you will run out of first.
- It determines the amount of product that can be formed.
- This <u>must</u> be determined when you are given the amounts of two or more reactants.

Limiting & Excess Reactants

- If you have more than 1 reactant, the likelihood of having the exact same ratio required is very small.
- You are very likely to run out of one reactant before the other, hence, stopping the reaction.
- The reaction stops when the limiting reactant runs out, therefore, having excess of the other reactant.

Example #1:	2Na + Cl ₂ 👄 2NaCl
Given 6.70 mol of	Na and 3.20 mol of Cl ₂ .
Step 1. What is the limit	ting reagent?
HAVE	NEED
6.70 mol Na	1 mol Cl ₂
	2 mol Na
3.20 mol Cl ₂	2 mol Na
	1 mol Cl ₂

$2Na + CI_2 \longrightarrow 2NaCI$	LR determines	
Given 6.70 mol of Na and 3.20 mol of Cl ₂ .	Product made	
Step 3. How many moles of NaCl are made?		
3.20 mol Cl ₂ 2 mol NaCl 1 mol Cl ₂		

Example #2: 2Cu + S → Cu ₂ S				
Given 80.0 g of copper and 25.0 g of sulfur.				
Step 1. What is the limiting reagent?				
HAVE				NEED
80.0 g Cu	1 mol Cu	1 mol S	32 g S	
	64 g Cu	2 mol Cu	1 mol S	
25.0 g S	1 mol S	2 mol Cu	64 g Cu	
	32 g S	1 mol S	1 mol Cu	

$N_2 + 3H_2 \longrightarrow 2NH_3$		
Given 341.0- L of N $_{2}$ and 236.0 -L of H $_{2}$ @ STP		
Step 3. How many grams of NH₃ can be made?		
236.0 L H ₂ 1 mol H ₂ 2 mol NH ₃ 17-g NH ₃ 22.4 - L 3 mol H ₂ 1 mol NH ₃		
This answer should be in scientific notation		

Example #4: $N_2 + 3H_2 \longrightarrow 2NH_3$ How many liters of NH_3 are produced if 85.0-grams of N_2 and 85.0-grams of H_2 react @ STP?		
85.0-g N ₂	1 mol N ₂ 3 mol H ₂ 2-g H ₂ 28-g N ₂ 1 mol N ₂ 1 mol H ₂	
85.0-g H ₂	1 mol H ₂ 1 mol N ₂ 28-g N ₂ 2-g H ₂ 3 mol H ₂ 1 mol N ₂	
85.0-g N ₂	1 mol N ₂ 2 mol NH ₃ 22.4 - L 28-g N ₂ 1 mol N ₂ 1 mol NH ₃	

Determining Percent Yield $2CuCl + H_2S \longrightarrow Cu_2S + 2HCl$ 44.0 mol of CuCl forms an actual yield of 6.0 mol of Cu ₂ S	$2CuCl + H_2S \longrightarrow Cu_2S + 2HCl$ 44.0 mol of CuCl forms an actual yield of 6 mol of Cu ₂ S	
2. Actual yield of Cu ₂ S in grams?	3. What is the percent yield of Cu ₂ S? <i>(same units!)</i> Actual Yield Theoretical Yield	

