

* The balanced equation gives the ratios for the reactants and products.
* 1 mole of Mg reacts with 2 moles of HCl
* 1 mole of MgCl_{2} and 1 mole of H_{2} are produced
$\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(a q) \rightarrow \mathrm{MgCl}_{2}(a q)+\mathrm{H}_{2}(g)$
- How many moles of HCl are needed to react 2 moles of Mg ?
- How many moles of H_{2} are produced if 6 moles of HCl reacts?
- How much Magnesium is needed to produce 7.6 moles of MgCl_{2} ?

Ratios in chemical equations
 $4 \mathrm{Fe}(\mathrm{s})+\mathbf{3 \mathrm { O } _ { 2 }}(\mathrm{g}) \longrightarrow \mathbf{2 F e} \mathrm{O}_{3}(\mathrm{~s})$

What are the possible mole ratios?

12.1 Using Everyday Equations

- Stoichiometry is the calculation of quantities using different substances in chemical equations.
- Based on the Law of Conservation of Mass.

Chemists use balanced chemical equations as a basis to calculate how much reactant is needed or product is formed in a reaction.

What is conserved in a Chemical Reaction?		
Atoms		Atoms
Mass		Mass
Moles		Moles
Molecules		Molecules
Volume		Volume

Hon Chem 12.notebook

A What is Conserved in Chemical Equations?

- Mass \& atoms always!
- Volume is not because temp. or pressure can change.
- Moles, molecules, and formula units are not because atoms rearrange in a chemical reaction.

Mole Ratios in chemical equations

- Ratio between the number of moles of any two substances in a balanced equation. $\mathbf{N}_{2}+\mathbf{3} \mathbf{H}_{2} \rightarrow \mathbf{N H}_{3}$
- Can change but should be listed in lowest whole number form.
- Lowest Whole-number Ratios are used during mole to mole conversions.

In a balanced chemical equation, mass \& atoms are conserved...
$\mathbf{4 F e}(\mathrm{s})+\mathbf{3 O}_{2}(\mathrm{~g}) \longrightarrow \mathbf{2} \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$

Excess vs. Limiting

- What does excess mean?
- If you have excess reagent, that means you have plenty of it.

Reagent = Reactant

```
3 eggs + 2 cups Flour + 1 Cup sugar }->1\mathrm{ cake
You have:
    > 12 eggs
    > 10 cups Flour
    8 cups sugar
Which ingredient limits the number of cakes you can bake?
Which ingredients do you have an excess of?
```


12.2 Stoichiometric Calculations

- Mole-Mole Calculations
- Begin with a mole quantity
- End with a mole quantity
- One step operation

Stoichiometric Pathways
 $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

How would you convert volume of nitrogen gas into mass of nitrogen trihydride @ STP?

$$
\mathrm{Zn}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{ZnCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

How would you convert atoms of zinc into volume of hydrogen gas @ STP?

How would you convert moles of Zinc into formula units of zinc chloride?

More Mole-Mole Calculations

Aluminum metal reacts with oxygen in a synthesis reaction. How many moles of product can be made from 7.8×10^{-1} moles of oxygen gas?

Mass-Mass Calculations

- 3 step process
- Molar Masses required

1. Change mass to moles
2. Mole - mole ratio
3. Change mole to mass

More Mole-Mole Calculations
Aluminum metal reacts with oxygen in a synthesis reaction.
How many moles of product can be made from 7.8×10^{-1}
moles of oxygen gas?

More Mole-Mole Calculations
Aluminum metal reacts with hydrochloric in a single replacement reaction. How many moles of hydrochloric acid are required to react with 7.5 moles of Aluminum?

More Mole-Mole Calculations $4 \mathrm{AI}+\mathbf{3 O _ { 2 }} \longrightarrow \mathbf{2 \mathrm { Al } _ { 2 } \mathrm { O } _ { 3 }}$

How many moles of Al is needed to make 3.7 mol of $\mathrm{Al}_{2} \mathrm{O}_{3}$?

	Mass-Mass Calculations
-	3 step process
-	Molar Masses required
1.	Change mass to moles
2.	Mole - mole ratio
3.	Change mole to mass

Stoichiometric Calculations

Aqueous sodium nitrate reacts with aqueous copper (II) phosphate in a double replacement reaction. How many formula units of copper (II) nitrate are produced from 3.26×10^{4} moles of sodium nitrate?

Other Stoichiometric Calculations

- Stoichiometry calculations may include any unit of measurement that is related to the mole.
- Molar Road Map

Stoichiometric Calculations

Assuming STP, how many liters of ammonia are produced from 7.03×10^{25} molecules of hydrogen gas reacting with an excess of nitrogen?

12.3 Limiting Reactants

- Reactant that is used up first in a chemical reaction, or what you will run out of first.
- It determines the amount of product that can be formed.
- This must be determined when you are given the amounts of two or more reactants.

Limiting \& Excess Reactants

- If you have more than 1 reactant, the likelihood of having the exact same ratio required is very small.
- You are very likely to run out of one reactant before the other, hence, stopping the reaction.
- The reaction stops when the limiting reactant runs out, therefore, having excess of the other reactant.

Determining Limiting Reagent

- Using the amounts of substances present, perform a mol-mol conversion for each. This gives you the amount needed.
- Compare the amount needed with the amount present.
- Whichever substance has too little present is the limiting reagent.

Example \#1: $\quad 2 \mathrm{Na}+\mathrm{Cl}_{2} \longrightarrow \mathbf{2 N a C l}$

Given 6.70 mol of Na and 3.20 mol of Cl_{2}.
Step 1. What is the limiting reagent?
HAVE

$\mathbf{2 N a}+\mathbf{C l}_{\mathbf{2}} \longrightarrow \mathbf{2 N a C l}$

Given 6.70 mol of Na and 3.20 mol of Cl_{2}.
Step 2: What is the excess reagent and how much excess is there?

Hon Chem 12.notebook

2Cu $+\mathrm{S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}$
Given 80.0 g of copper and 25.0 g of sulfur.
Step 2: What is the excess reagent and how much excess is there?
Sulfur: 25.0 grams -20.0 grams $=$
5.0 grams in Excess

Example \#3: $\mathbf{N}_{\mathbf{2}}+\mathbf{3} \mathbf{H}_{\mathbf{2}} \longrightarrow \mathbf{2} \mathbf{N H}_{\mathbf{3}}$

Given 341.0-L of N_{2} and 236.0 -L of $\mathrm{H}_{2} @$ STP
Step 1. What is the limiting reagent?

Example \#2: $\mathbf{2 C u}+\mathbf{S} \longrightarrow \mathrm{Cu}_{2} \mathbf{S}$
Given 80.0 g of copper and 25.0 g of sulfur.
Step 1. What is the limiting reagent? have

NEED

$2 \mathrm{Cu}+\mathrm{S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}$

Given 80.0 g of copper and 25.0 g of sulfur. Step 3. How much $\mathrm{Cu}_{2} \mathrm{~S}$ can be made?

$$
\mathbf{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

Given 341.0-L of N_{2} and 236.0 -L of $\mathrm{H}_{2} @$ STP
Step 2: What is the excess reagent and how much excess is there?

Nitrogen: $\mathbf{3 4 1 . 0}$ liters - $\mathbf{7 8 . 6 7}$ liters=
262.3 liters in Excess

$$
\mathbf{N}_{2}+3 \mathrm{H}_{2} \longrightarrow 2 \mathrm{NH}_{3}
$$

Given 341.0-L of N_{2} and 236.0 -L of $\mathrm{H}_{2} @$ STP
Step 3. How many grams of NH_{3} can be made?

12.4 Percent Yield

- Theoretical yield: the maximum amount of product that can form from the amount of reactants given. > (Regular Stoichiometry)
- Actual yield: the amount of product that actually forms during a reaction. Cannot be greater than the theoretical yield. $>$ (Often less)
- Percent yield: a percentage comparing the actual yield with the theoretical yield. (Same units) How efficient a reaction is... $>\%=($ Actual \div Theoretical $) \times 100$

Determining Percent Yield
 $\mathbf{C a C O}_{3} \longrightarrow \mathbf{C a O}+\mathbf{C O}_{2}$

24.8 g of calcium carbonate is heated to produce an actual yield of 13.1 g of calcium oxide.
2. What is the percent yield? (Must be same units!!)

Determining Percent Yield
 $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$

24.8 g of calcium carbonate is heated to produce. an actual yield of 13.1 g of calcium oxide.

1. What is the theoretical yield?

Determining Percent Yield
 $2 \mathrm{CuCl}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{HCl}$

44.0 mol of CuCl forms an actual yield of 6.0 mol of $\mathrm{Cu}_{2} \mathrm{~S}$

1. Theoretical yield of $\mathrm{Cu}_{2} \mathrm{~S}$ in grams?

Hon Chem 12.notebook

Determining Percent Yield
 $2 \mathrm{CuCl}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{Cu}_{2} \mathrm{~S}+\mathbf{2 H C l}$

44.0 mol of $\mathbf{C u C l}$ forms an actual yield of 6.0 mol of $\mathrm{Cu}_{2} \mathrm{~S}$
2. Actual yield of $\mathrm{Cu}_{2} \mathrm{~S}$ in grams?

$4 \mathrm{NH}_{3}+\mathbf{5 O}_{\mathbf{2}} \rightarrow 4 \mathrm{NO}+\mathbf{6 H} \mathbf{2}$
9.0 g of NH_{3} produces a percent yield of 63% water.

1. Theoretical yield of $\mathrm{H}_{2} \mathrm{O}$ in grams?
2. Actual yield of $\mathrm{H}_{2} \mathrm{O}$ in grams?

Hint: Actual \div Theoretical $=.63$

$\mathbf{2 C u C l}+\mathrm{H}_{2} \mathrm{~S}$
 $$
\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{HCl}
$$

44.0 mol of CuCl forms an actual yield of 6.0 mol of $\mathrm{Cu}_{2} \mathrm{~S}$
3. What is the percent yield of $\mathrm{Cu}_{2} \mathrm{~S}$? (same units!)

$$
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}
$$

1. What is the theoretical yield of $\mathrm{H}_{2} \mathrm{O}$ in grams?

2. What is the actual yield of $\mathrm{H}_{2} \mathrm{O}$ (in grams) if only 63% was actually produced?
