CHAPTER 15 Solutions

Characteristics of Solutions

Solute: substance that dissolves
Solvent: dissolving medium
Solutions can be: (see table 15.1 for examples)

- Gases: Air
- Liquids: salt water, carbonated water
- Solids: steel, brass, bronze (alloys)

Solvation

- Solute particles are separated and mixed throughout the solvent. Dissolving
- Negatively and positively charged ions become surrounded by solvent molecules.
> Polar solvents dissolve ionic and polar compounds.
> Non-Polar solvents dissolve non-polar compounds.
- Solvation is a surface phenomenon!
- Water dissolving NaCl.

What determines how fast solutes dissolve?

1. amount of surface area
2. force of collisions with solvent
3. frequency of collisions with solvent

Agitation

solvent is brought into contact with the solute more frequently with greater force.

- Shaking and stirring

Aqueous Solutions in Ionic and Molecular Compounds

- Like dissolves like.
- Salt and water: ionic \& polar
- Sugar (molecular) and Water: polar \& polar
- Gasoline and grease: non polar molecular molecules
- In some ionic compounds, the attraction of the ions is stronger than the attraction from the water, therefore, dissolving will not occur.

3 factors increase the rate of solvation:

- Agitation
- Temperature

These increase the collisions between

- Particle Size
solvent and solute

Particle Size

powder has a large surface area:volume ratio, therefore has most of its particles exposed to a solvent.

Large Crystals have a lot of surface area, but a lot of volume as well, which make it difficult for solvent to be exposed to the particles inside.

Heat of Solution

The overall energy change that occurs during solvation.
Solute and solvent particles require energy to separate them. (Endothermic)

When they mix together, energy is released.
(Exothermic)

For Example:

- $\mathbf{3 6 . 2}$ grams of $\mathbf{N a C l}$ in 100 grams of water @ $25^{\circ} \mathrm{C}$.

$$
\frac{36.2-\mathrm{g} \mathrm{NaCl}^{100-\mathrm{g} \mathrm{H}_{2} \mathrm{O}}}{} \text { at } 25^{\circ} \mathrm{C}
$$

Solubility is generally expressed in grams of solute per 100 g of solvent.

$$
100-\mathrm{g}=100-\mathrm{mL} \quad \frac{\text { grams of solute }}{100-\mathrm{g} \mathrm{H}_{2} \mathrm{O}} \text { at } 20^{\circ} \mathrm{C}
$$

Saturated Solution: contains maximum amount of dissolved solute for a given amount of solvent.

Unsaturated Solution: less then the maximum

Factors Affecting Solubility

- For liquids and solids, the solubility of most substances increases with temperature because the particles are colliding with more energy.
- Gases are less soluble at high temperatures because they escape into the air as kinetic energy increases.

Thermal Pollution

- Industrial plants remove cold water and dump hot water back into the lake.
- This increases the temperature of the water, decreasing the dissolved O_{2}.
- Warm vs. Cold Soda can
- The solubilities of gases are greater in cold water than in hot water
- Hotter water has higher vapor pressure, which allows gas to escape
- The components of air become less soluble as the temperature of the water rises.

Supersaturated Solutions

Pressure and Solubility

- Gases are more soluble in liquids when the external pressure is higher
- Why does pop fizz when you open it?
- How do they get the carbon dioxide to dissolve in the solvent?
> If the pop fizzes at sea level, what could bottlers do to increase the solubility of a gas?

Henry's Law

- At a given temperature the solubility of a gas in a liquid is directly proportional the pressure of the gas above the liquid
- In other words, as the pressure of the gas above the liquid increases, the solubility of the gas increases

$$
\frac{S_{1}}{P_{1}}=\frac{S_{2}}{P_{2}}
$$

Example

A gas has a solubility in water of $\mathbf{1 0 . 5} \mathbf{~ g} / \mathrm{L}$ at $15{ }^{\circ} \mathrm{C}$ and 4.49 atm of pressure. What is the solubility of the gas in water at $15^{\circ} \mathrm{C}$ and 6.07 atm of pressure?

$$
\frac{10.5-\mathrm{g} / \mathrm{L}}{4.49 \mathrm{~atm}}=\frac{}{6.07 \mathrm{~atm}}
$$

Concentration= amount of solute dissolved in a solvent.
 Molarity

Dilute solutions have a small amount of solute.

Concentrated solutions have a large amount of solute.

15.2 Solution Concentration

The concentration of a solution is a measure of the amount of solute that is dissolved in a given quantity of solvent.

- The unit for concentration is Molarity (M)

How do I compare $1.0-\mathrm{M} \mathrm{HCl}$ with $2.0-\mathrm{M} \mathrm{HCl}$?
How do I compare $1.0-\mathrm{M} \mathrm{HCl}$ with $1.0-\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$?

Key Concept!
Is it possible to have $1-\mathrm{mL}$ of 5.0 M solution?
If you poured 5.0 M HCl into 3 different size containers, would the molarity in each container change?

Hon Chem 15.notebook

Example

What is the molarity of NaCl in sea water if it contains 4 moles of NaCl per 500-mL?

Example

How many moles of NaCl are dissolved in $\mathbf{1 0 0 . 0} \mathbf{~ m L}$ of a 5.0 M solution?

$$
\mathbf{n}=\mathbf{M} \times \mathbf{V}=\frac{5.0-\mathrm{moles}}{1.0-\mathrm{L}} \times 0.1-\mathrm{L}=
$$

Which flask has more moles of HCl dissolved?

Example

What is the molarity of NaCl in sea water if it contains $\mathbf{2 0 . 5} \mathbf{g}$ of NaCl per $\mathbf{7 5 0}-\mathrm{mL}$?

Example

How many grams of NaCl are contained in 450.0 mL of a $\mathbf{2 . 0 M}$ solution?

Example

What volume (in mL) of 12.0 MHCl is needed to have 5.00 moles of HCl ?

$$
\mathbf{V}=\frac{\mathbf{n}}{\mathbf{M}}=\frac{5.0 \text { moles }}{\frac{12.0-\mathrm{moles}}{1.0-\mathrm{L}}}
$$

Making Dilutions

- Adding water to an existing solution.
- Increasing the volume to lower Molarity
- The number of moles of solute does not change when a solution is diluted
- $M_{1} \times V_{1}=M_{2} \times V_{2}$
- Volume can be in mL or L as long as they are the same on both sides.
- The number of moles are the same
on both sides.
- Stock solution is M_{1} or the solution of greater concentration.

Making Molar Solutions

- Remember, solute has some volume, so you cannot always add 1.0-L of solvent

1. Convert the moles needed into grams
2. Mass the correct mass of solute
3. Put the solute in a 1-L graduated cylinder
4. Add solvent until you reach 1-L.

How much water must be added to make 2.0 M HCl ?

Example
Concentrated $\mathbf{H}_{2} \mathrm{SO}_{4}$ is 18.0 M , what volume is needed to make 4.50 L of 1.00 M solution? How much water must be added to it?

$M_{1}: 18.0$ M

V_{1} :
$M_{2}: 1.0 \mathrm{M}$
$\mathrm{V}_{2}: 4.50$ - L

$$
\begin{aligned}
& \text { The number of moles in each solution are the same!!! } \\
& \text { The difference between the } 2 \text { solutions is the amount of water you add. }
\end{aligned}
$$

Mixing Solutions

Calculate the final concentration if $5.0-\mathrm{L}$ of $\mathbf{2 . 0} \mathbf{M ~ N a C l}$ and $\mathbf{3 . 0} \mathbf{- L}$ of 4.0 M NaCl are mixed?

Step 1: Find total volume (Same units)
Step 2: Find total moles

Step 3: Calculate molarity

Example

Calculate the final concentration if 4.00 L of 5.0 M NaCl and 6.00 L of $\mathbf{2 . 0} \mathbf{M ~ N a C l}$ are mixed, then you added 5.0-L of water to the mixture.
Percent Mass vs. Percent Volume

mass of solute
mass of solution

1-mL of water $=$ 1-gram of water

Example

Calculate the final concentration if 4.00 L of 5.0M NaCl and $\mathbf{6 . 0 0} \mathrm{L}$ of 2.0 M NaCl are mixed?

Percent Solutions

- Determining the percentage of solute in any given solution.
- Not the same as molarity because every solute has a different molar mass
- Important when comparing different solutions!! -comparing $1.0-\mathrm{M} \mathrm{HCl}$ vs. $1.0-\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$

Hon Chem 15.notebook

Percent Volume Example

What is the $\%(\mathrm{v} / \mathrm{v})$ of ethanol when $75-\mathrm{mL}$ is diluted to a volume of $\mathbf{2 5 0} \mathbf{~ m L}$ with water?

Percent Mass Example

How many grams of glucose would you need to prepare 2.0 L of $\mathbf{2 \%}(\mathrm{m} / \mathrm{m})$ glucose solution? How much water was used?

Molality

- Moles of solute dissolved in 1-kilogram of solvent
- Often more useful than molarity because volume can change with temperature, mass will not.

$$
\text { Molality }(m)=\frac{\text { moles of solute }}{\text { kilograms of solvent }}
$$

Example

What is the percent (mass/mass) of NaCl in a $\mathbf{2 0 0 . 0} \mathbf{~ m L}$ solution containing $\mathbf{1 4}$ grams of NaCl ?

Example

What is the \%(v/v) of ethanol when $50-\mathrm{mL}$ is diluted with 150 mL of water?

Molality Example

What is the molality of a solution containing 13.7 grams of NaCl dissolved in $\mathbf{1 2 5 0 . 0}$ grams of water

1. Grams of NaCl to moles
2. Grams of $\mathrm{H}_{2} \mathrm{O}$ to kilograms

Mole Fractions

When you know the moles of solute \& solvent
The sum of the mole fractions is always 1 , since they make up 100% of the solution.

This is a ratio of moles of solute to moles of solute + solvent. ($X=$ mole fraction)

$$
X_{A}=\frac{n_{A}}{n_{A}+n_{B}} \quad X_{B}=\frac{n_{B}}{n_{A}+n_{B}}
$$

15.3 Colligative Properties of Solutions

- Colligative properties depend on the number of particles dissolved in a given mass of solvent
- The collection of particles

1. Freezing Point depressoin
2. Vapor Pressure lowering
3. Boiling Point elevation

- When a weak electrolyte is in solution, only a fraction of the solute exists as ions
> (Molecular compounds, Ammonia, Water)
- When a strong electrolyte is dissolved, almost all of the solute exists as ions. (More dissociation)
> (Acids, Bases, Soluble Salts)

Mole Fraction Example

What is the mole fraction of HCl in an aqueous solution consisting of $\mathbf{2 9 . 3} \% \mathrm{HCl}$ by mass?

1. Convert $29.3-\mathrm{g} \mathrm{HCl}$ to moles
2. Convert $70.7-\mathrm{g} \mathrm{H}_{2} \mathrm{O}$ to moles
3. Solve for mole fraction of HCl

$$
\mathrm{X}_{\mathrm{HCl}}=\frac{\mathrm{n}_{\mathrm{HCl}}}{\mathrm{n}_{\mathrm{HCl}}+\mathrm{n}_{\text {water }}}
$$

Electrolytes in Aqueous Solution

- Compounds that conduct an electric current in aqueous solution or the molten state are electrolytes
- All ionic compounds: the strength of an electrolyte is determined by the amount of dissociation of the ions
- Insoluble ionic compounds are ionic compounds in molten state.
- Barium sulfate only in molten state.
- 1 mole of NaCl dissociates as 1 mole of Na^{+}and 1 mole of CF , therefore, $\mathbf{2}$ moles of dissolved particles.

Nonelectrolytes in Aqueous Solution

- Do not conduct an electric current in either aqueous solution or the molten state
- Many molecular compounds are nonelectrolytes because they are not composed of ions, hence, do not ionize or dissociate
- Compounds made of carbon.

3 Colligative Properties

- Factors that change when Particles dissolve
- For the same substance, we compare Molarity!
- For different substances, we compare the number particles dissolved for 1 mole of a substance.

3 Colligative Properties

1. vapor pressure lowering
2. boiling point elevation
3. freezing point depression

Dissolved Particles

The more dissolved particles, the greater change in the colligative properties.

- Glucose: 1 molecule (1 particle)
- $\mathrm{NaCl}: 2$ ions (2 particles)
- $\mathrm{CaCl}_{2}: 3$ ions (3 particles)

Which will have the most dissolved particles in 1-L of solution?

$\mathbf{3 . 0} \mathbf{- M} \mathbf{~ N a C l}$	$\mathbf{1 . 8 - M} \mathbf{A I C l}_{3}$
3.0 moles $\times\left(6.02 \times 10^{23}\right)$ $\times 2$ particles $\left(\mathrm{Na}^{+} \& \mathrm{Cl}\right)$	1.8 moles $\times\left(6.02 \times 10^{23}\right)$ $\times 4$ particles $\left(\mathrm{Al}^{3+}, \mathrm{Cl}, \mathrm{Cl}, \mathrm{Cl}\right)$

30^{0} Celsius	
Water	Salt Water
Vapor Pressure 4.24-kPa	Vapor Pressure $3.69-\mathrm{kPa}$
Boiling Point $=100^{\circ} \mathrm{C}$	Boiling Point $=102^{\circ} \mathrm{C}$
Vapor pressure of the water must be $101.3-\mathrm{kPa}$ to boil.	Vapor pressure of the water must be 101.3-kPa to boil.

Vapor Pressure

- Substances with high vapor pressure evaporate quickly. Alcohd + Ammonia (mdecular)
- Substances with low vapor pressure evaporate slowly. Water t salt water

Boiling Point

- Vapor pressure of liquid equals vapor pressure of the air.
- The higher percentage of solute, the higher the boiling point.
- As water evaporates, the concentration of solute rises.

High Altitude Directions

- At high altitudes, the atmospheric pressure is less than 101.3 kPa . $($ Denver $=84.0 \mathrm{kPa})$
- In Denver, water boils at $94^{\circ} \mathrm{C}$ so water reaches a boil faster but food cooks slower than at sea level.

Freezing Point

- The more dissolved particles, the colder it needs to be for a solvent to freeze.
- Antifreeze in cars.
- Why is CaCl_{2} better to melt ice than NaCl ?

Boiling Point

- Salt water has lower vapor pressure than fresh water.
- Salt water will boil at $102^{\circ} \mathrm{C}$ at a location with an atmospheric pressure of 1 atm .
- Pasta will cook faster at $102^{\circ} \mathrm{C}$ than $100^{\circ} \mathrm{C}$.

This is the solubility of salt in water at $25^{\circ} \mathrm{C}$.

$$
\frac{36.2-\mathrm{g} \mathrm{NaCl}}{100-\mathrm{g} \mathrm{H}_{2} \mathrm{O}}
$$

- What happens to the solubility if temperature increases or decreases?
- How many grams of NaCl can be dissolved in 300 grams of water?

Osmosis

- The diffusion of solvent particles across a semipermeable membrane
- Plays a big role in biological systems as water moves back and forth across the membrane
- Sugar molecules cannot cross the membrane, therefore, more water goes into the balloon that out of it.

Osmotic Pressure

- Is a colligative property
- Pure water consists of all water moleculues, therefore, it is easier for them to move across the membrane than the sugar \& water molecule mixture.
- Osmotic pressure is based on the number of molecules traveling across the membrane.

Colloids

- Mixtures containing particles that are intermediate in size between those of suspensions and true solutions.
- No settling, but no dissolving either.
- Cannot be filtered.
- Ex. Glue, jello, milk, butter
- The properties of colloids differ from those of solutions and suspensions.
- Many colloids are cloudy or milky in appearance but look clear when they are very dilute.
- The particles in a colloid cannot be retained by filter paper and do not settle out with time.
- Emulsions are colloidal dispersions of liquids in liquids.
- Soaps and other emulsifying agents allow the formation of colloidal dispersions between liquids that do not ordinarily mix, such as oil and water

Tyndall Effect

- Exhibited by dilute colloids.
- Colloidal particles exhibit this by scattering visible light in all directions.
- Suspensions also exhibit the Tyndall effect, but solutions never do.
- Why don't solutions exhibit the Tyndall Effect?

Solution	Colloid	Suspension
Dissolving		
Cannot be filtered		
Small Particles		
Uniform Throughout		
Homogeneous		
No Settling		
No Tyndall Effect		
No Brownian Motion		

Brownian Motion

- The chaotic movement of colloidal particles
- Brownian motion is caused by the water molecules of the medium colliding with the small, dispersed colloidal particles.
- This motion causes collisions of particles with electrostatic forces, which prevents settling.
- Heating actually can cause a colloid to settle, since the kinetic energy becomes so high, particles cannot stay suspended.

