CHAPTER 16
 Energy \& Chemical Change

Law of Conservation of Energy

- Energy is never created or destroyed
- Energy is converted from one form to another
- When wood burns...
$>$ Energy stored in the bonds of the wood is liberated as heat.
- When hot metal is put in cold water...

Heat

- Represented by "q"
- form of energy that always flows from a warmer object to a cooler object.
- Measured by the flow of energy and the temperature change

16.1 Energy

- Energy is the ability to do work or to produce heat.
- Light, heat, electricity

2 Types:

1. Kinetic: Energy of motion
2. Potential: due to chemical composition or physical position

Chemical Potential Energy

- Energy stored in substances due to their chemical compositions, which is released in chemical reactions
- Octane is $\mathrm{C}_{8} \mathrm{H}_{18}$ (gasoline)
- Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \begin{gathered}\text { Energyis stored } \\ \text { ne } \\ \text { ne onds. }\end{gathered}$

Units that measure Heat

- Calorie: amount of heat required to raise 1 -gram of pure water $1^{\circ} \mathrm{C}$. (cal)
- SI unit of heat \& energy is the joule. (J)
> 1 calorie $=4.184$ joules
- Nutritional calories are kilocalories

Dietary Calories

- 1 "C" = 1 kilocalorie $=1000$ calories
- 10 grams of sugar has 41 calories of heat
- Means that when your body burns 10 grams of sugar, it releases 41,000 calories of energy.

SPECIFIC HEAT CAPACITY

- 100-g of water has the same specific heat capacity as 5-g of water specific heat relates to 1-gram only
- 500-g of aluminum has the same specific heat capacity as $\mathbf{2 - g}$ of aluminum.
- Mass does not matter!!!!

SPECIFIC HEAT

The specific heat capacity, or simply the specific heat, represented by "C", of a substance is the amount of heat it takes to raise the temperature of $1-\mathrm{g}$ of the substance
$1^{\circ} \mathrm{C}$ and is measured in $\mathrm{J} /\left(\mathrm{g} \mathrm{x}^{\circ} \mathrm{C}\right)$.

- Unique for each substance
- See table 17.1 on page 508 .

Heat Capacity

The amount of heat it takes to change an object's temperature by exactly $1^{\circ} \mathrm{C}$.

Depends upon mass and chemical composition.
How much heat can a given mass hold...
Kinetic Energy increases as temperature increases!

Heat Capacity

$100-\mathrm{g}$ of water has twice the heat capacity of $50-\mathrm{g}$ of water.
20-g of lead has twice the heat capacity of 10-g of lead.
Mass is important with regard to heat capacity!!!!

Heat Capacity vs. Specific Heat

Water has a greater "C" than iron, regardless of the mass. Specific heat only refers to $1-g$.

$$
\begin{aligned}
& \left(\mathrm{C}_{\text {iron }}=0.45 \mathrm{~J} / \mathrm{g} \times{ }^{\circ} \mathrm{C}\right) \\
& \left(\mathrm{C}_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g} \times{ }^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Does 100-g of Fe have a greater heat capactiy than $\mathbf{5 - g}$ of water?

Hon Chem 16.notebook

Heat Capacity vs. Specific Heat

$1000-\mathrm{g}$ of iron has a greater heat capacity than $5-\mathrm{g}$ of water.
$\left(\mathrm{C}_{\text {iron }}=0.45 \mathrm{~J} / \mathrm{g} \mathrm{x}^{\circ} \mathrm{C}\right)$
$\left(\mathrm{C}_{\text {water }}=4.18 \mathrm{~J} / \mathrm{g} \mathrm{x}^{\circ} \mathrm{C}\right)$
$1000-\mathrm{g} \mathrm{Fe}$
5-g Water
$\frac{x 0.45 \mathrm{~J}}{460 \cdot \mathrm{~J}}$
$\frac{\mathrm{x} 4.18 \mathrm{~J}}{20.9-\mathrm{J}}$

CALCULATING SPECIFIC HEAT

- Specific Heat = "C"
- Heat = "q"
- Change in temperature $=\Delta T$
heat (Joules or calories)
mass (g) \mathbf{x} change in temp. $\left({ }^{\circ} \mathrm{C}\right.$)

Calculating Heat Change

- $q=m \times C \times \Delta T$
- $\Delta \mathbf{H}=\mathbf{m x C x \Delta T}$
$\Delta=$ change in

Example \#3
A 181 gram chunk of silver has a heat capacity of $42.8 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. Calculate the specific heat of silver using the information provided?

```
q:
m:
C:
\DeltaT:
```


Example \#4

A 237 gram piece of iron was at $17^{\circ} \mathrm{C}$. We added 1246 joules of heat to the iron. What is the new temperature? $\left(\mathrm{C}_{\text {iron }}=\mathbf{0 . 4 5 ~ J / g ~ x ~}{ }^{\circ} \mathrm{C}\right)$
q :
m:
C:
$\Delta \mathrm{T}$:

16.2 Heat In Chemlcal Reactions

Calorimeters are devices used to measure the amount of heat absorbed or released during chemical or physical processes.

Calorimetry is the accurate and precise measurement of the heat change for chemical and physical processes.

Changes in heat \& temerature

You cannot convert $\Delta \mathrm{T}$ into Fahrenheit.
Is there such a thing as a $-\Delta \mathbf{T}$?
If temperature goes down, it is a $-\Delta H$, but it is a $+\Delta \mathrm{H}$ if the temperature goes up.

One System vs. Two System

The heat change in one substance, you
determine \boldsymbol{q}

1 mass
$1 \Delta T$
1 specific heat

The transfer of heat from one substance to another. You do
not determine \mathbf{q}. One temperature increases, the other decreases.

2 masses
$2 \Delta T$
2 specific heats

Example Problem \#5 (One System)
How much heat (in joules) is needed to raise 27.0 grams of water from $10.0^{\circ} \mathrm{C}$ to $90.0^{\circ} \mathrm{C}$?

Example Problem \#6 (Two different Systems) A 100 gram drinking glass decreased from $30.0^{\circ} \mathrm{C}$ to $18.0^{\circ} \mathrm{C}$ as 150 grams of water was added. What was the original temperature of the water?
$\left(\mathrm{C}_{\text {glass }}=0.5 \mathrm{~J} / \mathrm{g} \mathrm{x}^{\circ} \mathrm{C}\right)$
$q_{\text {glass }}=q_{\text {water }}$

	Glass	Water
q		
mass		
C		
$\Delta \mathrm{T}$		

$m \times C_{\text {glass }} \times \Delta T=m \times C_{\text {water }} \times \Delta T$

Example Problem \#7 (Two different Systems)
A 130 gram sample of iron is added to $100-\mathrm{mL}$ of water at $19.0^{\circ} \mathrm{C}$. The final temperature of the water/iron mixture is to $25.0^{\circ} \mathrm{C}$. What was the original temperature of the iron? $\left(\mathrm{C}_{\text {iron }}=0.46 \mathrm{~J} / \mathrm{g} \mathrm{x}{ }^{\circ} \mathrm{C}\right)(1-\mathrm{mL}=1-\mathrm{g})$

	Iron	Water
q		
mass		
C		
$\Delta \mathrm{T}$		

$m \times C_{\text {water }} \times \Delta T=m \times C_{\text {iron }} \times \Delta T$

The Flow of Heat Energy

- A system is the specific part of the universe on which you focus your attention. (Always the Reactants!)
- The surroundings include everything outside the system. (Products)
- Together, the system and surroundings constitute the universe.
- This determines whether a reaction is exothermic or endothermic.

Thermochemistry

The study of the heat changes that occur during chemical reactions and physical changes of state.

Chemical Change: new substances created during chemical reaction
Physical Change: same substances, different form.

Physical Changes (no Cusm R*N)

Endothermic: surroundings cool down

- Snow melting or Steam forming
- Ice \rightarrow Liquid \rightarrow Vapor
${ }^{+} \Delta \mathrm{H}=$ gaining heat (Heat into system.)
Exothermic: surroundings heat up
- Steam condensing or Ice forming
- Vapor \rightarrow Liquid \rightarrow Ice
$\Delta \mathrm{H}=$ losing heat (Heat out of system)

\& Chemical Reaction

Endothermic: A + Energy \rightarrow B + C

- Bonds in substance B + C have more stored energy than the bonds in substance A .

Exothermic: $\mathbf{A}+\mathbf{B} \rightarrow \mathbf{C}+$ Energy

- Bonds in substance A + B have more stored energy than the bonds in substance C .

Hon Chem 16.notebook

During a chemical change...

- Process that absorbs heat from the surroundings is called endothermic.
(Positive heat change)
- Test tube feels colder

- A process that loses heat to the surroundings is called exothermic. (Negative heat change)
(0) Test tube feels warmer

Enthalpy (H)

- The heat content of a system at constant pressure.
- You cannot measure the energy of a system,
however, you can measure enthalpy changes.
- The change in enthalpy for a reaction is called the
enthalpy of reaction $\left(\Delta H_{r x x}\right)$
- $q=\Delta H_{r x n}$

Nothing would happen to " A " if it didn't absorb energy.

Chemical Reaction:

- System is the reactants
- Surroundings are the products

Physical Change:

- The system must be defined
- Hot iron in cold water...
- Iron is system=exothermic
- Water is system=endothermic

Enthalpy of Reaction

- The $\Delta \boldsymbol{H}_{r x n}=\boldsymbol{H}_{\text {final }}-\boldsymbol{H}_{\text {initial }}$
- The $\Delta \boldsymbol{H}_{\text {rxn }}=\boldsymbol{H}_{\text {products }}-\boldsymbol{H}_{\text {reactants }}$
- Exothermic $=-\Delta H_{r x n}$
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+1625-\mathrm{kJ}$
- Endothermic $=+\Delta H_{r x n}$

$$
27-\mathrm{kJ}+\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s}) \quad \rightarrow \quad \mathrm{NH}_{4}^{+}+(\mathrm{aq})+\mathrm{NO}_{3^{\cdot}}(\mathrm{aq})
$$

Endothermic: surroundings \rightarrow system
$\mathrm{C}_{(s)}+2 \mathrm{~S}_{(s)}+$ Energy $\rightarrow \mathrm{CS}_{2()}$

- Positive ΔH (Heat Change)

Exothermic: system \rightarrow surroundings $\mathrm{Mg}_{(s)}+2 \mathrm{HCl}_{(a q)} \rightarrow \mathrm{MgCl}_{2(a q)}+\mathrm{H}_{2(g)}+$ Energy

- Negative ΔH (Heat Change)

Enthalpy of Combustion

- The heat of combustion is the enthalpy change for the complete burning of one mole of a substance.
- $\Delta H_{\text {comb }}$ expressed in $\mathrm{kJ} / \mathrm{mol}$
- $\Delta H^{0}=$ standard conditions $\left(1 \mathrm{~atm} \& 25^{\circ} \mathrm{C}\right)$

Example Problem \#9
Using the equation below, calculate the amount of heat (in kJ) released by burning $24.0-\mathrm{g}$ of CH_{4}.
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+891 \mathrm{~kJ} \quad(\Delta H=-891 \mathrm{~kJ})$

16.3 THERMOCHEMICAL EQUATIONS

- Balanced equations that include physical state and the energy change
- Reactants are system, products are surroundings
- You can interpret whether the reaction is exothermic or endothermic by looking at the equation.

$$
4 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta H=-1625 \mathrm{~kJ}
$$

Example Problem \#10
Using the equation below, calculate the amount of heat (in kJ) required to break down $152.0-\mathrm{g}$ of KClO_{3}.
$2 \mathrm{KClO}_{3}+84.9-\mathrm{kJ} \rightarrow \mathbf{2 K C l}+3 \mathrm{O}_{2} \quad(\Delta H=+84.9-\mathrm{kJ})$

CHANGES OF STATE

- The energy required for a phase change is different than the energy required to raise the temperature of a substance $1^{\circ} \mathrm{C}$.
- How much energy (in kJ) is absorbed when 25.0-grams of water increases from water at $40^{\circ} \mathrm{C}$ to steam at $120^{\circ} \mathrm{C}$?

Molar Enthalpy of Fusion

- The heat required to melt 1 mole of a liquid
- Endothermic process, hence, ΔH is positive
- The reverse of fusion is solidification, which is an exothermic process.
- $\Delta H_{\text {fus }}=-\Delta H_{\text {solid }}$

Molar Enthalpy of Vaporization

- The heat required to vaporize 1 mole of a liquid
- Endothermic process, hence ΔH is positive
- The reverse of vaporization is condensation and is an endothermic process.
- $\Delta \boldsymbol{H}_{\text {vap }}=-\Delta \boldsymbol{H}_{\text {cond }}$

Standard enthalpies of Vaporization and Fusion			
Substance	Formula	$\boldsymbol{\Delta} \boldsymbol{H}_{\text {vap }}(\mathbf{k J / m o l})$	$\boldsymbol{\Delta} \boldsymbol{H}_{\text {tus }}(\mathbf{k J} / \mathbf{m o l})$
Water	$\mathrm{H}_{2} \mathrm{O}$	40.7	6.01
Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	38.6	4.94
Methanol	$\mathrm{Ch}_{3} \mathrm{OH}$	35.2	3.22
Ammonia	NH_{3}	23.3	5.66

Phase Change Example Problem A 50.0 gram piece of ice at $\mathbf{- 1 2 5}{ }^{\circ} \mathrm{C}$ changes into steam at $125^{\circ} \mathrm{C}$. How much energy (in kj) is absorbed during this process?

Hon Chem 16.notebook


```
1. Ice @-125 ' C }\longrightarrow ice@ @ 0'C
2. Ice @ 0 O
3.Water @ 0 }\mp@subsup{}{}{\circ}\textrm{C}\longrightarrow\mathrm{ water @ 100 }\mp@subsup{}{}{\circ}\textrm{C
4.Water @ 100 }\mp@subsup{}{}{\circ}\textrm{C}\longrightarrow\mathrm{ steam @ 100 }\mp@subsup{}{}{\circ}\textrm{C
5. Steam@ 100 }\mp@subsup{}{}{\circ}\textrm{C}\longrightarrow\mathrm{ steam @ 125}\mp@subsup{}{}{\circ}\textrm{C
```



```
1. Steam@ @12 }\mp@subsup{}{}{\circ}\textrm{C}\longrightarrow\mathrm{ Steam @ 100 }\mp@subsup{}{}{\circ}\textrm{C
2. Steam @ 100 % C water @ 100 %
3. Water@ 100 }\mp@subsup{}{}{\circ}\textrm{C}\longrightarrow\quad\mathrm{ water @ 0}\mp@subsup{0}{}{\circ}\textrm{C
4. Water@ 0'C }\longrightarrow ice@ 0 C C
5. ice @ 0 O
```


Phase Change Example Problem

A 39.0 gram sample of steam at $112^{\circ} \mathrm{C}$ changes into ice at $-7^{\circ} \mathrm{C}$. How much energy (in kj) is released during this process?

Molar Heat of Solution

- The heat change caused by dissolution (dissolving) of one mole of substance is the molar heat of solution.
- Grams \rightarrow Moles \rightarrow KJ
- $\Delta \mathrm{H}_{\text {solution }}$

Hon Chem 16.notebook

Example Problem

When 5-g of solid $\mathbf{N a O H}$ is dissolved in water, how much heat is released? $\Delta \mathrm{H}_{\text {solution }}=-445.1 \mathrm{kj} / \mathrm{mol}$

Applying Hess's Law

Use the following 2 equations to determine ΔH

$$
\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \quad \Delta H=
$$

\qquad
The following equations are used to determine ΔH

$$
\begin{array}{ll}
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g}) & \Delta H=+180 \mathrm{~kJ} \\
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) & \Delta H=+112 \mathrm{~kJ}
\end{array}
$$

16.4 Calculating Enthalpy change

Hess's Law: two or more thermochemical equations can be added to produce a final equation

- Allows you to calculate enthalpy changes for hard to simulate reactions by imagining that they occur through steps
- Chemical equations with the desired substances are needed, plus their known enthalpy changes.

$\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	$\Delta H=$	
a. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$	$\Delta H=+180 \mathrm{~kJ}$	b is reversed to make c
b. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$	$\Delta H=+112 \mathrm{~kJ}$	a \& c are added together
c. $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$	$\Delta H=-112 \mathrm{~kJ}$	

$2 \mathrm{NO}(\mathrm{g})+\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\mathbf{2 N O}(\mathrm{g}) \quad \Delta H=+68 \mathrm{~kJ}$

Standard Enthalpy of Formation

- The change in enthalpy that accompanies the formation of one mole of a compound in its standard state form. (See table of $\Delta \boldsymbol{H}^{0_{\mathrm{f}}}$ in Appendix C)

Where do standard enthalpies come from?

- Standard state is $25^{\circ} \mathrm{C}(298 \mathrm{~K}) \& 1$-atm of pressure
- They were measured experimentally
- Free elements \& diatomic elements have a ΔH^{0} of zero.
$>$ Free Elements: S, Cu, Fe, Al,

What is the $\Delta H^{0_{\mathrm{f}}}$ for the following equation?

$$
2 \mathrm{~S}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Standard enthalpies are for 1 mole of a substance
$\mathrm{S}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H_{\mathrm{f}} \mathrm{o}_{\mathrm{f}}=-395 \mathrm{~kJ}$
$\Delta H^{0_{\mathrm{f}}}=0 \mathrm{~kJ} \quad \Delta H^{0_{\mathrm{f}}}=0 \mathrm{~kJ} \quad \Delta H^{0_{\mathrm{f}}}=-395 \mathrm{~kJ} \quad$ From Table of $\Delta H_{\mathrm{f}}{ }_{\mathrm{f}}$

16.5 Reaction Spontaneity

- Physical or chemical processes that occur with no outside intervention, however, some energy needs to be applied to get the process started.
$>$ Lighting a burner or a sparkler
- Enthalpy and Entropy play a role in whether a reaction is spontaneous or nonspontaneous
- Most spontaneous reactions are exothermic, but not all

Enthalpy vs. Entropy

- The heat change (enthalpy) is not the only factor in determining whether a reaction will be spontaneous.
- Entropy is the measure of the disorder or randomness that the particles of a system possess.
- The Law of Disorder states that particles tend to be arranged randomly and that spontaneous process increase the entropy in the universe.

Predicting Entropy Change $\boldsymbol{\Delta} \mathbf{S}$

Solids > Liquids > Gases

Dissolving gases in a solvent decreases entropy
When products have more gas particles than the reactants
A solid or liquid is dissolved in a solution increases entropy
5. Increasing temperature increases entropy

Reactants with High Entropy are less likely to react because they collide less due to their randomness.

- Reactants with High Entropy forming solids with low entropy is less likely to occur

Entropy of phases:

- Gases $>$ Liquids $>$ Solids

$$
\mathbf{M g}_{(s)}+2 \mathbf{H C l}_{(a q)} \Rightarrow \mathbf{M g C l}_{2(a q)}+\mathbf{H}_{2(\mathrm{~g})}+\text { Heat }
$$

Entropy increases when:

- Solid reactants give gas or liquid products
- Liquid reactants give gas products

Reactants with Low Entropy are more likely to react because they collide more due to their fixed positions.

- Reactants with low Entropy forming gases with high entropy is more likely to occur

Changing the number of parts

$\mathbf{N}_{\mathbf{2}}$ or 2 N (Which has more entropy?)
$\mathrm{N} \equiv \mathrm{N}$ —praricles
Entropy increases when a substance is divided into parts
N N _ particles

Dissolved substances
Ionic compounds are dissolved in water and become more separated.

Enthalpy = $\mathbf{\Delta H}$

- Exothermic: energy stored in reactant
$>\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{C}+$ Heat
$>$ Spontaneous $-\Delta H$ (Enthalpy Decrease)
- Endothermic: reactants have no energy
$>$ A + Heat $\longrightarrow \mathbf{B}+\mathbf{C}$
$>$ Nonspontaneous $+\Delta A \quad$ (ε nthalpy increare)

Entropy Increase

- Fewer particles to more particles
- Solid \rightarrow Gas
- Liquid \rightarrow Gas
- More disorder and randomness on products side

Ideal Spontaneous Reaction

1. Exothermic: releasing energy

- Enthalpy Decrease, $-\Delta \mathrm{H}$

2. Entropy Increase: high disorder
\& randomness = many collisions

- $\mathrm{N}_{2} \rightarrow 2 \mathrm{~N}+$ heat

$$
\Delta S_{\text {universe }}=\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}
$$

The $\Delta \mathrm{S}_{\text {universe }}$ is positive, then it is a spontaneous process.

- The entropy of the surroundings increases during an exothermic reaction because heat is released, making the $\Delta \mathrm{S}_{\text {surrounding }}$ positive.
- The entropy of a system increases, causing the $\Delta \mathbf{S}_{\text {system }}$ to be positive.

Entropy Decrease

- More particles to fewer particles
- Gas \rightarrow Solid
- Gas \rightarrow Liquid
- More disorder and randomness on reactants side
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(s)}+6 \mathrm{O}_{2(g)} \longrightarrow 6 \mathrm{CO}_{2(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(I)}+\mathrm{HEAT}$

1) Exothermic - ΔH

Enthalpy Decrease
2.) Entropy Increase

Solid + gas \rightarrow liquid + Gas

Ideal NonSpontaneous Reaction

1. Endothermic: absorb energy

- Enthalpy Increase, $+\Delta \mathrm{H}$

2. Entropy Decrease: low disorder
\& randomness $=$ no collisions

- $2 \mathrm{~N}+$ heat $\rightarrow \mathrm{N}_{2}$

Spontaneous or Nonspontaneous

Enthalpy: ($-\Delta \mathrm{H}$) Large Release, Entropy: Large Increase
Enthalpy: $(+\Delta \mathrm{H})$ Large Gain, Entropy: Large Decrease
Enthalpy: $(+\Delta \mathrm{H})$ Small Gain, Entropy: Large Increase
Enthalpy: ($-\Delta \mathrm{H}$) Small Loss, Entropy: Large Decrease
Enthalpy: $(-\Delta \mathrm{H})$ Large Loss, Entropy: Small Decrease
Enthalpy: $(+\Delta H)$ Large Gain, Entropy: Small Increase

$$
\mathbf{H g}_{(l)}+\mathbf{B r}_{2(l)}+\text { Free Energy } \rightarrow \mathbf{H g B r}_{2(s)}
$$

1.) Endothermic Enthalpy Increase
2) Entropy Decrease
liquids \rightarrow solid

Reaction Scenarios

- The following diagrams are "hypothetical" scenarios that will occur if a reaction takes place.
- Look at the scenarios and determine whether or not the reaction will be spontaneous or nonspontaneous.

Ideal Spontaneous	Ideal NonSpontaneous
Exothermic	Endothermic
$-\Delta H$	$+\Delta H$
Enthalpy Decrease	Enthalpy Increase
Stored energy in Reactants	No energy stored in Reactants
Low Entropy Reactants	High Entropy Reactants
Solid Reactants	Gaseous Reactants
Solids form Gases	Gases form Solids
Entropy Increase	Entropy Decrease

Free Energy

- Useful energy that is liberated in chemical reactions tha can be harnessed to do work.
- Just because it is available, it will not necessarily be used.
- 30\% of free energy is used to propel a car.
- Exergonic = release of free energy
- This energy is called Gibbs Free Energy
- $\Delta \mathbf{G}_{\text {system }}=\Delta \mathbf{H}-(\mathbf{T} \Delta \mathbf{S})$

Gibbs Free-Energy Summary

- Δ G $=$ Free Energy Change
> Negative if spontaneous
$>$ Positive if nonspontaneous
- $\Delta \mathbf{H}=$ Enthalpy change
- $\mathbf{T}=$ Temperature in Kelvin
- $\Delta S=$ Entropy change

Calculating Free Energy Change

- $\Delta \mathrm{H}=-91.8 \mathrm{~kJ}$
- T $=298$ Kelvin (Standard Conditions)
- $\Delta \mathrm{S}=-197 \mathrm{~J} / \mathrm{K}$
- $\Delta \mathrm{G}=-\mathbf{9 1}, 800 \mathrm{~J}-(298 \mathrm{Kx}-197 \mathrm{~J} / \mathrm{K})$
$=-91,800 \mathrm{~J}-58,700 \mathrm{~J}$
$=-33,100 \mathrm{~J}$ of Free Energy
Spontaneous Reaction

Calculating Free Energy Change

- $\Delta \mathrm{H}=+2000 \mathrm{~kJ}$
- $T=100$ Kelvin
- $\Delta \mathrm{S}=-10 \mathrm{~kJ}$
- $\Delta \mathrm{G}=+\mathbf{2 0 0 0} \mathrm{kJ}-(\mathbf{1 0 0} \mathbf{x - 1 0} \mathrm{kJ})$
$=+2000 \mathrm{~kJ}-(-1000 \mathrm{~kJ})$
$=+3000 \mathrm{~kJ}$ (No free energy)
Nonspontaneous

Calculating Free Energy Change

- $\Delta \mathrm{H}=+2000 \mathrm{~kJ}$
- $\mathrm{T}=100$ Kelvin
- $\Delta \mathrm{S}=+10 \mathrm{~kJ}$
- $\Delta \mathrm{G}=\mathbf{2 0 0 0} \mathrm{kJ}-(\mathbf{1 0 0} \mathbf{x} \mathbf{1 0} \mathrm{kJ})$
$=2000 \mathrm{~kJ}-1000 \mathrm{~kJ}$
$=+1000 \mathrm{~kJ}$ (No free energy)
Nonspontaneous

