CHAPTER 19 Acids & Bases

19.1 Acid & Base

ACIDS

- tart or sour taste
- Electrolytes
- Strong acids are corrosive

Acid Facts...

- indicators will change color
- Blue litmus paper turns pink
- react with metals to form H₂
- react with OH- to form water and a salt.
- Feel like water.

Common Reactions with Acids

 $Zn+HCl \rightarrow ZnCl_2+H_2$ $NaHCO_3+HC_2H_3O_2 \rightarrow NaC_2H_3O_2+H_2O+CO_2$

Definitions for Acids/Bases

- Dilute: small amount of solute 1-M
- Concentrated: large amount of solute 6-M
- <u>Indicator</u>: changes color to show the presence of acids or bases
- <u>Corrosive</u>: eat or wear away

Common Acids in Food

- Citric Acid: lemons, oranges
- Malic Acid: apples
- Acetic Acid: Vinegar, Catsup (Ketchup)
- Lactic Acid: sour milk
- Phosphoric Acid: soda pop
- Tartaric Acid: wine

Rule #1 for Naming Acids

- -ide
- hydro-(stem)-ic acid
- Ex. Hydrochloric acid

HCI: Hydrogen chloride

H₂S: Dihydrogen sulfide

HBr: Hydrogen bromide

HF: Hydrogen fluoride

Rule #2 for Naming Acids

- -ite
- (stem)-ous acid
- Ex. Sulfurous acid H₂SO₃

H₂SO₃: Dihydrogen sulfite

H₃PO₃: Trihydrogen phosphite

HNO₂: Hydrogen nitrite

Rule #3 for Naming Acids

- -ate
- (stem)-ic acid
- Ex. Nitric Acid HNO₃

H₂SO₄: Dihydrogen sulfate

H₃PO₄: Trihydrogen phosphate

HNO₃: Hydrogen nitrate

H₂CO₃: Dihydrogen carbonate

<u>BASES</u>		
 react with acids to form water and a salt 		
• bitter taste		
 Strong bases are corrosive Group 1A metals form stronger bases than Group 2A metals. 		
K++ OH		
Na⁺ + OH ——→		
Mg ²⁺ + OH ───		
Ca²++OH ───		

Base Facts...

- feel slippery
- Alkaline solutions.
- electrolytes
- indicators change color
- Red litmus paper blue

Common Bases

- Household Ammonia
- Cleaners, Window Cleaner
- Lye and Drain Cleaner
- Sodium Hydroxide
- Milk of Magnesia (Laxative)
- Antacids (Tums, Rolaids, etc.)

Acid-Base Definitions		
<u>Type</u>	<u>Acid</u>	<u>Base</u>
Arrhenius	H ⁺ producer	OH producer
Bronsted-Lowry	H ⁺ donor	H* acceptor
Lewis	Electron-pair acceptor	Electron-pair donor

Arrhenius Acids and Bases

- ACIDS: compounds containing hydrogen that ionize to yield hydrogen ions in aqueous solution
- BASES: compounds that ionize to OHyield hydroxide ions in aqueous solution

Arrhenius Acids

- **Monoprotic**: HNO₃ 1 ionizable hydrogen
- **Diprotic**: H₂SO₄ 2 ionizable hydrogen
- **Triprotic**: H₃PO₄

3 ionizable hydrogen

Bronsted-Lowry Acids and Bases

- ACID: hydrogen-ion donor
- BASE: hydrogen-ion acceptor
- An acid and a base react to form a conjugate acid and a conjugate base.

- Conjugate Acid: forms when a base gains a hydrogen
- Conjugate Base: forms when an acid donates a hydrogen
- Conjugate Acid-Base Pair
- $HCl + H_2O \rightarrow H_3O^+ + Cl^-$
- $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

$$^{\mathrm{NH}_3} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{NH}_4^+ + \mathrm{OH}^-$$

Lewis Acids & Bases

<u>Lewis Acids</u>: accept an electron pair <u>Lewis Bases</u>: donate an electron pair

This expands Acid/Base definitions, by allowing us to classify acids and bases in the absence of H $^{+}$, H $_{3}O^{+}$, and OH $^{-}$.

Amphoteric

- Substances that either act as a base or an acid.
- Water is the best example.
- $HCl + H_2O \rightarrow H_3O^+ + Cl^-$
- $NH_3 + H_2O \rightarrow NH_4^+ + OH^-$

Anhydrides

- Oxides that become acids or bases when reacting with water (CO₂ + CaO)
- Nonmetal oxides and water produce acids

$$CO_2 + H_2O \rightarrow H_2CO_3$$

Metal oxides and water produce bases

$$CaO + H_2O \rightarrow Ca(OH)$$
,

19.2 STRENGTHS OF ACIDS AND BASES

- Strong acids <u>completely ionize</u> and weak acids only <u>partly ionize</u>.
- Strong acids are strong electrolytes and weak acids are weak electrolytes
- Table 19-1 on page 603

Complete vs. Partial Ionization

Strong Acids have maximum ionization and have no reverse reaction.

HCI + H₂O → H₃O⁺ + CI⁻

Weak Acids have partial ionization and stay at equilibrium

• $HC_2H_3O_2(aq) + H_2O(1) \rightleftharpoons H_3O(aq) + C_2H_3O_2(aq)$

Maximum Ionization
Strong Acid

Very Little Ionization Weak Acid

Acid Strength & Bronsted-Lowry Model

What attracts the H+ ion more, the base or the conjugate base?

 $\begin{array}{ccc} HX(aq) + H_2O(I) & \boldsymbol{\rightarrow} & H_3O^*(aq) + X\cdot(aq) \\ \text{acid} & \text{base} & & \text{Conugate} \\ \text{Acid} & & \text{Base} \end{array}$

(aq)
Water is pulling so strong on the H+ that the conjugate base cannot attract it enough to reverse

 $\begin{array}{ccc} HX(aq) + H_2O(I) & & & H_3O^*(aq) + X^*(aq) \\ \text{acid} & \text{base} & & \text{Conugate} \\ & & \text{Acid} & & \text{Base} \end{array}$

The conjugate base is pulling so strong on the H+ that it allows the reaction to reverse and stay at equilibrium

Water is at Equilibrium Remember your shifting rules!!!

$$H_2O \leftrightarrow H^+ + OH^-$$

- If H+ ions are released, it causes a shift that will lower OH- ions.
- HCl →H+ +Cl
- If OH- ions are released, it causes a shift that will lower H+ ions.
- NaOH → Na+ + OH-

Hydrogen Ions and Acidity

• A water molecule that gains a hydrogen ion becomes a positively charged hydronium ion (H₃O⁺)

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$

What does strong mean?

- Strong acids and bases ionize more than weak acids and bases.
- 8.0 M phosphoric acid is not as dangerous as 1.0 M sulfuric acid.
 - > Concentration and ionization are two different things.
- · Ionization determines strength
- Concentration is used to compare the same acids with a different molarity.

Strong Acids	Weak Acids
HClO₄	H₃PO₄
HCI	HF
HNO ₃	HC ₂ H ₃ O ₂
H ₂ SO ₄	HCN
ні	H₂S
HBr	H ₂ CO ₃

Acid Ionization Constant (Ka)

- The value of the equilibrium constant expression for the ionization of a weak acid. (same as K_{eq} , but for an acid)
- Indicates whether the reactants (un-ionized molecules) or products (ions) are favored at Equilibrium.
- Weak acids have the smallest Ka values.

$$K_a = \frac{[H_3O^*]x[CN^*]}{[HCN]}$$

Strengths of Bases

Strong Bases dissociate entirely and weak bases partially dissociate.

Metallic hydroxides are strong bases.

• NaOH(s) \rightarrow Na⁺(aq) + OH⁻(aq)

Weak Bases

What attracts the H+ ion more, the base or the conjugate base?

 $NH_3(aq) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$

Conugate Conugate Acid Base

 $CH_3NH_2(aq) + H_2O(I) \longrightarrow CH_3NH_3^+(aq) + OH^-(aq)$

Conugate Acid Conugate Base acid

The conjugate base is pulling so strong on the H+ that it allows the reaction to reverse and stay at equilibrium

Base Ionization Constant (K_b)

- The value of the equilibrium constant expression for the ionization of a base. (Same as Keq, but for a base)
- Indicates whether the reactants (un-ionized molecules) or products (ions) are favored at Equilibrium.
- Weak bases have the smallest K_b values.
- $CH_3NH_2(aq) + H_2O(I) \rightleftharpoons CH_3NH_3^+(aq) + OH^-(aq)$

[CH₃NH₃*]x[OH·] [CH₃NH₂]

19.3 What is pH?

- Ion-product constant for water = 1×10^{-14}
- ACID: H⁺ greater than OH⁻
- **BASE**; OH- greater than H+

- [OH-] increases, then [H+] decreases!
- [OH-] decreases, then [H+] increases!
- $K_w = [H^+] \times [OH^-] = 1.0 \times 10^{-14} \text{ mol/L}^2$

- The reaction in which two water molecules react to give ions is the self-ionization of water.
- The self-ionization of water occurs to a very small extent.

$$K_w = [H^+] x [OH^-] = 1.0 x 10^{-14} mol/L^2$$

$$[H^+] = \frac{1.0 \times 10^{-14} \text{ mol/L}^2}{[OH^-]}$$

$$[OH-] = \frac{1.0 \times 10^{-14} \text{ mol/L}^2}{[H^+]}$$

- Finding the [OH-] of a solution.
- The [H+] is 1.0 x 10 -5 mol/L.
- $K_w = [H^+] \times [OH^-]$
- Acid = $[H^+]$ greater than 1.0 x 10⁻⁷
- Base = $[H^+]$ less than 1.0 x 10-7
- Neutral = $[H^+]$ equal to 1.0 x 10⁻⁷

The pH Scale

- pH = 0
- > Many H+ ions
- > Few or no OH- ions
- pH = 14
 - > Many OH- ions
 - > Few or no H⁺ ions
- pH = 7
 - > Number of "H+ ions" and "OH- ions" are equal

What is a logarithm?

log 100 = 2 (This means $10^2 = 100$)

log 50 = 1.699 (This means $10^{1.699} = 50$)

log 0.5 = -.301 (This means $10^{-.301} = 0.5$)

Calculating Logarithms

- 5.6
- 3.2
- 0.00056
- 2.5 x 10⁻⁶

Calculating Antilogarithms

- 3.26
- -6.9
- 0.56
- 4.8

The pH Concept

- The pH of a solution is the negative logarithm of the [H+] concentration
- $pH = -log(H^+)$
- The [H+] concentration is the antilogarithm of the negative pH.
- [H+] = antilog (- pH)

Calculating pH from [H+] concentration

• Always find the [H+] concentration first

What is the pH for the following?

- 1. $[H^+] = 1.0 \times 10^{-10} \text{ mol/L}$
- 2. $[H^+] = .0000001 M$
- 3. $[OH-] = 1.0 \times 10^{-12} \text{ mol/L}$ (Two ways)
- 4. [OH·] = .0001 M 5. [OH·] = 1.0 x 10-7
- 6. $[H+] = 6.73 \times 10^{-11} M$

Calculating [H+] concentration from pH

• Take antilog of negative pH.

What is the [H+] for the following pH?

- 1.4.0
- 2.6.0
- 3. 12.0
- 4.8.0
- 5.7.0
- 6. 11.65

Measuring pH

- <u>Indicators</u>: use color
- Usually a piece of paper
- Litmus paper does not give the strength.
- pH meters: accurate and fast measurements

H ⁺ Concentration	OH-Concentration	pН	рОН
6.23 x 10 ⁻²			
	3.67 x 10 ⁴		
		9.4	
			11.5

Which is the strongest acid?

Hint: always use pH to determine strength!!!

- [H+] = 1.0 x 10-5 M
- [OH-] = 1.0 x 10⁻¹² M
- $[H^+] = 1.0 \times 10^{-11} M$
- [OH-] = 1.0 x 10-4 M

Which is the strongest base?

Hint: always use pH to determine strength!!!

- $[H^+] = 1.0 \times 10^{-3} M$
- [OH-] = 1.0 x 10-7 M
- $[H^+] = 1.0 \times 10^{-13} M$
- [OH-] = 1.0 x 10⁻¹¹ M

What is the Hydrogen ion concentration if 3.5×10^3 Macid ionizes at 13.0%?

What is the pH & pOH?

What is the Hydroxide ion concentration if 4.7 x 10⁻² Mbase ionizes at 8.0%?

What is the pH & pOH?

Calculating	the	pH of	Strong	Acids
Strong acids ion	nize a	t 100%	, D	

What is the Hydrogen ion concentration if you have 2.0-*M* HCI?

What is the pH & pOH?

Calculating the pH of Strong Bases

Strong bases ionize at 100%

What is the Hydroxide ion concentration if you have 2.0 *M* NaOH?

What is the pH & pOH?

Calculating the pH of Strong Bases

Strong bases ionize at 100%, and can ionize more if there are more $\mbox{OH}\mbox{ }$ present.

What is the Hydroxide ion concentration if you have 2.3 x 10^{-3} M Ca(OH)₂?

What is the pH & pOH?

19.4 NEUTRALIZATION REACTIONS

• A reaction in which an acid and a base react in aqueous solution to produce a salt and water.

 $H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$

- Neutralization reactions are also considered salt production reactions.
- After neutralizing the acid and base, heating the solution will produce salt.

Acid-Base Reactions: produce salt and water

HCI + KOH →

H₂SO₄ + Ca(OH)₂ →

H₃PO₄ + Al(OH)₃ →

Steps in aNeutralization Reactions

- Titration
- Equivalence Point
- Standard Solution
- End Point
- Titration curves

TITRATION

 The addition of a known amount of solution of known concentration to determine the concentration of another solution.

Performing a Titration

- Standard Solution
- The solution of known concentration -Remember: concentration = molarity
- ex.) .50-*M* HCl

Equivalence Point

- The number of moles of hydrogen ions must equal the number of moles of hydroxide ions.
- Use stoichiometry!
- Mathematically neutral!!!! OH- = H
- Sometimes, the indicator does not change at the equivalence point.

End Point

- The point at which the indicator changes color.
- Not always equal to equivalence point
- Sometimes, the pH change is so drastic that it takes the indicator extra time to change.
- AKA...point of neutralization.

Phenophtalein

- Universal indicator for acid-base neutralization reactions.
- · Pink in a base
- · Colorless in an acid

Example #1

How many moles of H₂SO₄ would you require to neutralize 0.50 mol of NaOH? (Regular stoichiometry)

- Write a balanced equation.
- Moles neutralizes Moles

$$H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$$

- Find the ratio of H₂SO₄ to NaOH.
- Solve the problem.

Neutralization Reactions

- 1. Determine the number of moles in the known solution.
- 2. Using stoichiometry, determine the moles of unknown solution needed.
- 3. Answer the question using what you know about the unknown solution.

Example #2 - A

How much 1.0-M H₂SO₄ is needed to neutralize 1.0-L of 2.0-M NaOH?

H ₂ SO ₄	NaOH
м:	м:
V:	V:
n:	n:

 $H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$

Example #2 - B

How much 2.0-MH₂SO₄ is needed to neutralize 1.0-L of 2.0-M NaOH?

H ₂ SO ₄	NaOH
м:	м:
V:	V:
n:	n:

 $H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$

Example #2 - C

How much 5.0-M H₂S \hat{O}_4 is needed to neutralize 1.0-L of 2.0-M NaOH? $H_2SO_4 + 2NaOH \rightarrow 2H_2O + Na_2SO_4$

H ₂ SO ₄	NaOH
M:	м:
V:	V:
n:	n:

Example $#3 - \overline{A}$

If 1.0-Lof H₂SO₄ neutralizes 1.0-L of 2.0-M NaOH, what is the concentration of H₂SO₄?

H ₂ SO ₄	NaOH
М:	M:
V:	V:
n:	n:

$$H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$$

Example #3 - B

If 2.0-Lof H_2SO_4 neutralizes 1.0-L of 2.0-M NaOH, what is the concentration of H_2SO_4 ? $H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$

H ₂ SO ₄	NaOH
М:	м:
V:	V:
n:	n:

Example #3 – C

If 4.0-Lof H₂SO₄ neutralizes 1.0-L of 2.0-M NaOH, what is the concentration of H₂SO₄?

H₂SO₄	NaOH
M:	М:
V:	V:
n:	n:

$$H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$$

Example #4

A 25-mL solution of $\rm H_2SO_4$ is neutralized by 18 mL of 1.0 M NaOH using phenolphthalein as an indicator. What is the concentration of the $\rm H_2SO_4$ solution?

H ₂ SO ₄	NaOH
M:	м:
V:	V:
n:	n:

 $H_2SO_4 + 2NaOH \implies 2H_2O + Na_2SO_4$

Buffers

- A solution of weak acid and conjugate base or weak base and conjugate acid.
- Able to resist drastic changes in pH better than pure water
- Why is some aspirin buffered?

Buffer Capacity

The point at which a buffer can no longer resist change in pH. Dependent on the amount of acid or base that is added.