CHAPTER 19

Acids \& Bases

Acid Facts...

- indicators will change color
- Blue litmus paper turns pink
- react with metals to form H_{2}
- react with OH - to form water and a salt.
- Feel like water.

19.1 Acid \& Base
 ACIDS

- tart or sour taste
- Electrolytes
- Strong acids are corrosive

> Common Reactions with Acids
> $\mathrm{Zn}+\mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
> $\mathrm{NaHCO}_{3}+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Common Acids in Food

- Citric Acid: lemons, oranges
- Malic Acid: apples
- Acetic Acid: Vinegar, Catsup (Ketchup)
- Lactic Acid: sour milk
- Phosphoric Acid: soda pop
- Tartaric Acid: wine

Hon Chem 19.notebook

Rule \#1 for Naming Acids

- -ide
- hydro-(stem)-ic acid
- Ex. Hydrochloric acid

Rule \#2 for Naming Acids

- -ite
- (stem)-ous acid
- Ex. Sulfurous acid $\mathrm{H}_{2} \mathrm{SO}_{3}$

Rule ${ }^{\text {3 }} \mathbf{3}$ for Naming Acids

- -ate
- (stem)-ic acid
- Ex. Nitric Acid HNO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{3}$: Dihydrogen sulfite
$\mathrm{H}_{3} \mathrm{PO}_{3}$: Trihydrogen phosphite
HNO_{2} : Hydrogen nitrite
$\mathrm{H}_{2} \mathrm{SO}_{4}$: Dihydrogen sulfate
$\mathrm{H}_{3} \mathrm{PO}_{4}$: Trihydrogen phosphate
HNO_{3} : Hydrogen nitrate
$\mathrm{H}_{2} \mathrm{CO}_{3}$: Dihydrogen carbonate

BASES

- react with acids to form water and a salt
- bitter taste
- Strong bases are corrosive
- Group 1A metals form stronger bases than Group 2A metals.
$\mathrm{K}^{+}+\mathrm{OH}$
$\mathrm{Na}^{+}+\mathrm{OH} \longrightarrow$
$\mathrm{Mg}^{2+}+\mathrm{OH} \longrightarrow$
$\mathrm{Ca}^{2+}+\mathrm{OH} \longrightarrow$

Base Facts...

- feel slippery
- Alkaline solutions.
- electrolytes
- indicators change color
- Red litmus paper blue

Common Bases

- Household Ammonia
- Cleaners, Window Cleaner
- Lye and Drain Cleaner
- Sodium Hydroxide
- Milk of Magnesia (Laxative)
- Antacids (Tums, Rolaids, etc.)

Arrhenius Acids and Bases

- ACIDS: compounds containing hydrogen that ionize to yield hydrogen ions in aqueous solution
- BASES: compounds that ionize to OH yield hydroxide ions in aqueous solution

Arrhenius Acids

- Monoprotic: HNO_{3}

1 ionizable hydrogen

- Diprotic: $\mathrm{H}_{2} \mathrm{SO}_{4}$

2 ionizable hydrogen

- Triprotic: $\mathrm{H}_{3} \mathrm{PO}_{4}$

Bronsted-Lowry Acids and Bases

- ACID: hydrogen-ion donor
- BASE: hydrogen-ion acceptor
- An acid and a base react to form a conjugate acid and a conjugate base.
- Conjugate Acid: forms when a base gains a hydrogen
- Conjugate Base: forms when an acid donates a hydrogen
- Conjugate Acid-Base Pair
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

$$
\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}
$$

Lewis Acids \& Bases

Lewis Acids: accept an electron pair
Lewis Bases: donate an electron pair

This expands Acid/Base definitions, by allowing us to classify acids and bases in the absence of $\mathrm{H}^{+}, \mathrm{H}_{3} \mathrm{O}^{+}$, and OH^{-}.

Amphoteric

- Substances that either act as a base or an acid.
- Water is the best example.
- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
- $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{4}+\mathrm{OH}^{-}$

Anhydrides

- Oxides that become acids or bases when reacting with water $\left(\mathrm{CO}_{2}+\mathrm{CaO}\right)$
- Nonmetal oxides and water produce acids

$$
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}
$$

- Metal oxides and water produce bases

$$
\mathrm{CaO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}
$$

19.2 STRENGTHS OF ACIDS AND BASES

- Strong acids completely ionize and weak acids only partly ionize.
- Strong acids are strong electrolytes and weak acids are weak electrolytes
- Table 19-1 on page 603

Water is at Equilibrium
 Remember your shifting rules!!!
 $$
\mathbf{H}_{2} \mathbf{O} \leftrightarrow \mathbf{H}^{+}+\mathbf{O H}^{-}
$$

- If H^{+}ions are released, it causes a shift that will lower OH^{-}ions.
- $\mathbf{H C l} \rightarrow \mathrm{H}^{+}+\mathbf{C H}$
- If OH ions are released, it causes a shift that will lower H^{+}ions.
- $\mathrm{NaOH} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$

Complete vs. Partial Ionization

Strong Acids have maximum ionization and have no reverse reaction.

- $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$

Weak Acids have partial ionization and stay at equilibrium

- $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}(\mathrm{aq})$

Acid Strength \& Bronsted-Lowry Model

What attracts the H^{+}ion more, the base or the conjugate base?

Hydrogen Ions and Acidity

- A water molecule that gains a hydrogen ion becomes a positively charged hydronium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$

$$
\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

What does strong mean?

- Strong acids and bases ionize more than weak acids and bases.
- 8.0 M phosphoric acid is not as dangerous as 1.0 M sulfuric acid.
$>$ Concentration and ionization are two different things.
- Ionization determines strength
- Concentration is used to compare the same acids with a different molarity.

Strong Acids	Weak Acids
HClO_{4}	$\mathrm{H}_{3} \mathrm{PO}_{4}$
HCl	HF
HNO_{3}	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HCN
HI	$\mathrm{H}_{2} \mathrm{~S}$
HBr	$\mathrm{H}_{2} \mathrm{CO}_{3}$

Acid Ionization Constant (K_{a})

- The value of the equilibrium constant expression for the ionization of a weak acid. (same as $K_{e q}$, but for an acid)
- Indicates whether the reactants (un-ionized molecules) or products (ions) are favored at Equilibrium.
- Weak acids have the smallest Ka values.
- $\mathrm{HCN}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CN}(\mathrm{aq})$

Strengths of Bases

Strong Bases dissociate entirely and weak bases partially dissociate.

Metallic hydroxides are strong bases.

- $\mathrm{NaOH}(\mathrm{s}) \quad \rightarrow \quad \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Base Ionization Constant (K_{b})

- The value of the equilibrium constant expression for the ionization of a base. (Same as $K_{\text {eq }}$, but for a base)
- Indicates whether the reactants (un-ionized molecules) or products (ions) are favored at Equilibrium.
- Weak bases have the smallest K_{b} values.
- $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}(\mathrm{aq})+\mathrm{OH}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}\right] \times[\mathrm{OH}]}{\left[\mathrm{CH}_{3} \mathrm{NH}_{2}\right]}
$$

Hon Chem 19.notebook

19.3 What is pH ?

- Ion-product constant for water $=1 \times 10^{-14}$
- ACID: H^{+}greater than OH^{-}
- BASE; OH^{-}greater than H^{+}
- $\left[\mathrm{OH}^{-}\right]$increases, then $\left[\mathrm{H}^{+}\right]$decreases!
- $[\mathrm{OH}]$ decreases, then $\left[\mathrm{H}^{+}\right]$increases!
- $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{~mol} / \mathrm{L}^{2}$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right] \times\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{~mol} / \mathrm{L}^{2}$
$\left[\mathrm{H}^{+}\right]=\frac{1.0 \times 10^{-14} \mathrm{~mol} / \mathrm{L}^{2}}{\left[\mathrm{OH}^{-}\right]}$
$\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14} \mathrm{~mol} / \mathrm{L}^{2}}{\left[\mathrm{H}^{+}\right]}$
- Finding the $\left[\mathrm{OH}^{-}\right]$of a solution.
- The $\left[\mathrm{H}^{+}\right]$is $1.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$.
- $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right] \mathbf{x}\left[\mathrm{OH}^{-}\right]$
- \quad Acid $=\left[\mathrm{H}^{+}\right]$greater than 1.0×10^{-7}
- Base $=\left[\mathrm{H}^{+}\right]$less than 1.0×10^{-7}
- Neutral $=\left[\mathrm{H}^{+}\right]$equal to 1.0×10^{-7}

The pH Scale

- $\mathbf{p H}=\mathbf{0}$
$>$ Many $\mathrm{H}+$ ions
$>$ Few or no OH^{-}ions
- $\mathbf{p H}=14$
$>$ Many OH^{-}ions
$>$ Few or no H^{+}ions
- $\mathbf{p H}=7$
> Number of " \mathbf{H}^{+}ions" and "OH-ions" are equal

What is a logarithm?

$\log 100=2\left(\right.$ This means $\left.10^{2}=100\right)$
$\log 50=1.699\left(\right.$ This means $\left.10^{1.699}=50\right)$
$\log 0.5=-.301\left(\right.$ This means $\left.10^{-301}=0.5\right)$

Calculating Antilogarithms

- 3.26
--6.9
$\bullet 0.56$
- 4.8

Calculating pH from $\left[\mathrm{H}^{+}\right]$concentration

- Always find the $\left[\mathrm{H}^{+}\right]$concentration first

What is the pH for the following?

1. $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-10} \mathrm{~mol} / \mathrm{L}$
2. $\left[\mathrm{H}^{+}\right]=.0000001 \mathrm{M}$
3. $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$ (Two ways)
4. $[\mathrm{OH}-]=.0001 \mathrm{M}$
5. $[\mathrm{OH}]=1.0 \times 10^{-7}$
6. $[\mathrm{H}+]=6.73 \times 10^{-11} \mathrm{M}$

Calculating Logarithms

- 5.6
- 3.2
- 0.00056
- 2.5×10^{-6}

The pH Concept

- The pH of a solution is the negative logarithm of the $\left[\mathrm{H}^{+}\right]$concentration
- $\mathbf{p H}=-\log \left(\mathrm{H}^{+}\right)$
- The $\left[\mathrm{H}^{+}\right]$concentration is the antilogarithm of the negative pH .
- $[\mathrm{H}+]=\operatorname{antilog}(-\mathbf{p H})$

Calculating $\left[\mathrm{H}^{+}\right]$concentration from pH

- Take antilog of negative $\mathbf{p H}$.

What is the $\left[\mathrm{H}^{+}\right]$for the following pH ?

1. 4.0
2. 6.0
3. 12.0
4. 8.0
5. 7.0
6. 11.65

Hon Chem 19.notebook

Measuring pH

- Indicators: use color
- Usually a piece of paper
- Litmus paper does not give the strength.
- pH meters: accurate and fast measurements

H^{+}Concentration	OH Concentration	pH	pOH
6.23×10^{-2}			
	3.67×10^{-4}		
		9.4	
			11.5

Which is the strongest acid?

Hint: always use pH to determine strength!!!

- $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-5} \mathrm{M}$
- $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-12} \mathrm{M}$
- $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-11} \mathrm{M}$
- $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-4} \mathrm{M}$

What is the Hydrogen ion concentration if
 3.5×10^{-3} Macid ionizes at 13.0% ?

What is the $\mathrm{pH} \& \mathrm{pOH}$?

Which is the strongest base?

Hint: always use pH to determine strength!!!

- $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-3} \mathrm{M}$
- $[\mathrm{OH}]=1.0 \times 10^{-7} \mathrm{M}$
- $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-13} \mathrm{M}$
- $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-11} \mathrm{M}$

What is the Hydroxide ion concentration if 4.7×10^{-2} Mbase ionizes at $\mathbf{8 . 0} \%$?

What is the $\mathrm{pH} \& \mathrm{pOH}$?

Calculating the pH of Strong Acids Strong acids ionize at 100\%

What is the Hydrogen ion concentration if you have $\mathbf{2 . 0}-\mathbf{M H C l}$?

What is the $\mathrm{pH} \& \mathrm{pOH}$?

Calculating the pH of Strong Bases Strong bases ionize at $\mathbf{1 0 0 \%}$, and can ionize more if there are more OH^{2} present.

What is the Hydroxide ion concentration if you have $2.3 \times 10^{-3} \mathrm{MCa}(\mathrm{OH})_{2}$?

What is the $\mathbf{p H} \& \mathbf{p O H}$?

Calculating the pH of Strong Bases Strong bases ionize at 100\%
 What is the Hydroxide ion concentration if you have $\mathbf{2 . 0} \mathbf{M N a O H}$?

What is the $\mathbf{p H} \& \mathrm{POH}$?

19.4 NEUTRALIZATION REACTIONS

- A reaction in which an acid and a base react in aqueous solution to produce a salt and water.

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

- Neutralization reactions are also considered salt production reactions.
- After neutralizing the acid and base, heating the solution will produce salt.

Acid-Base Reactions: produce salt and water
$\mathrm{HCl}+\mathrm{KOH} \longrightarrow$
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Al}(\mathrm{OH})_{3} \longrightarrow$

Steps in aNeutralization Reactions

- Titration
- Equivalence Point
- Standard Solution
- End Point
- Titration curves

TITRATION

- The addition of a known amount of solution of known concentration to determine the concentration of another solution.

Equivalence Point

- The number of moles of hydrogen ions must equal the number of moles of hydroxide ions.
- Use stoichiometry!
- Mathematically neutral!!!! $\mathrm{OH}^{-}=\mathrm{H}^{+}$
- Sometimes, the indicator does not change at the equivalence point.

End Point

- The point at which the indicator changes color.
- Not always equal to equivalence point
- Sometimes, the pH change is so drastic that it takes the indicator extra time to change.
- AKA...point of neutralization.

Phenophtalein

- Universal indicator for acid-base neutralization reactions.
- Pink in a base
- Colorless in an acid

Example \#1

How many moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ would you require to neutralize 0.50 mol of NaOH ? (Regular stoichiometry)

- Write a balanced equation. Moles neutralizes Moles $\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
- Find the ratio of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to NaOH .
- Solve the problem.

Example \#2-B
How much 2.0-M $\mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to neutralize $1.0-\mathrm{L}$ of $2.0-\mathrm{M} \mathrm{NaOH}$?

Example \#2-A

How much 1.0-M $\mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to neutralize $1.0-\mathrm{L}$ of $2.0-\mathrm{M} \mathrm{NaOH}$?

$\mathbf{H}_{\mathbf{2}} \mathrm{SO}_{4}$	$\mathbf{N a O H}$
$\mathrm{M}:$	$\mathrm{M}:$
$\mathrm{V}:$	$\mathrm{V}:$
$\mathrm{n}:$	$\mathrm{n}:$

$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH}$
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Example \#2-C
How much 5.0-M $\mathrm{H}_{2} \mathrm{SO}_{4}$ is needed to neutralize $1.0-\mathrm{L}$ of $2.0-\mathrm{M} \mathrm{NaOH} ? \quad \mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Example \#3-A
If $1.0-\mathrm{Lof}_{2} \mathrm{H}_{2} \mathrm{~S}_{4}$ neutralizes $1.0-\mathrm{L}$ of $2.0-\mathrm{M} \mathrm{NaOH}$, what is the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

$\mathrm{H}_{2} \mathrm{SO}_{4}$	NaOH
$\mathrm{M}:$	$\mathrm{m}:$
$V:$	$\mathrm{V}:$
$\mathrm{n}:$	$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
$\mathrm{n}:$	

Example \#3 - C
 the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$?

$\mathbf{H}_{2} \mathbf{S O}_{4}$	$\mathbf{N a O H}$
$M:$	$M:$
$v:$	$\mathrm{V}:$
$\mathrm{n}:$	$\mathrm{n}:$

$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Buffers

- A solution of weak acid and conjugate base or weak base and conjugate acid.
- Able to resist drastic changes in $\mathbf{p H}$ better than pure water
- Why is some aspirin buffered?

Example \#4

A $25-\mathrm{mL}$ solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is neutralized by 18 mL of 1.0 M NaOH using phenolphthalein as an indicator. What is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$

Buffer Capacity

The point at which a buffer can no longer resist change in $\mathbf{p H}$. Dependent on the amount of acid or base that is added.

