CHAPTER 20

Oxidation-Reduction Reactions

Redox Reactions

Also known as... Oxidation-Reduction Reactions: chemical changes that occur when electrons are transferred between reactants.

- Oxidation originally meant the combination of an element with oxygen to give oxides.
 - 2Na + 02 -> 2Na20
- Over the years, reduction has meant the loss of oxygen from a compound.

2 Fe203 - 4 Fe + 3 02

Oxidation Numbers

An oxidation number is a positive or negative number assigned to an atom according to a set of arbitrary rules.

Tracks the movement of electrons

<u>Rule #1</u>

Uncombined element = 0

- Diatomic = 0. (*Non polar*)
- N_2 Fe Au O_2 C_4

Rule #5

Rule #6

Hydrogen in a compound

- +1 unless in a metal hydride like NaH, which is -1.
 Metal hydride is metal bonded *directly* to hydrogen.
- H₂O NaOH KH NH₄⁺ MgH₂
- Hydrogen bonded to a polyatomic ion is not a metal hydride!

<u>Rule #7</u>

Metals in groups 1A, 2A, & Al in group 3A form compounds in which the metal atom always has positive oxidation equal to their number of valence electrons.

1-A= +1
2 A= +2
AI = +3

<u>Rule #8</u>					
numbe	rs = 0.	<u>inus</u> , the s	Sum of Oxi	uation	
NaCl	Mg ₃ N ₂	K ₂ S	S ₂ O ₃	S ₂ O ₄	

CaO	Ca ₃ (PO ₄) ₂	H₂SO₄	
H ₂	O ₂	SCI ₆	
BaCl₂	NaH	кон	
CaSO₄	LiNO₃	CO2	
H_2O_2	CH₄	Na ₂ CO ₃	

Rule #9 Charged Compounds or Polyatomic ions, the sum of the oxidation # equals the charge of the polyatomic ion. (<i>Not Neutral</i> !!!)				
<i>SO</i> 4 ²⁻	MnO₄-	NH4+	NO ₃ -	PO ₄ ^{3.}

Oxidation Number Review				
PbO ₂	HSO₄ ⁻	MgF₂	AI(NO ₃) ₃	
Co ₂ (SO ₄) ₃				

Oxidation

The combination of an element or compound with oxygen to give oxides.

- $4Fe + 3O_2 \rightarrow 2Fe_2O_3$
- $C + O_2 \rightarrow CO_2$
- $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Reduction

- The loss of an oxygen from a compound. The amount of solid material has decreased.
- Iron oxide is reduced to iron by losing an electron.
- Carbon is oxidized to CO₂ by gaining oxygen.

 $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$

- Oxidation and reduction occur simultaneously.
- No oxidation occurs without reduction and no reduction occurs without oxidation.

Electron Shift in Redox Reactions

- Definition has expanded:
- Oxidation is complete or partial loss of electrons or gain of oxygen
- Reduction is complete or partial gain of electrons or loss of oxygen

LEO the lion goes GER

(Lose electrons oxidize)

(Gain electrons reduce)

- Reducing Agent loses electrons
- Oxidizing Agent accepts electrons

"LEO the lion goes GER" Mg + S \rightarrow MgS (Mg²⁺ + S²⁻)

Oxidation: Mg → Mg²⁺ + 2e⁻ (loss of e⁻) <u>Reduction:</u> S + 2e⁻ → S²⁻ (gain of e⁻) Reducing Agent: substance in a redox reaction that donates electrons. (Mg)

<u>Oxidizing Agent</u>: substance in a redox reaction that accepts electrons. (S)

 $Mg \ + \ S \ \textbf{\rightarrow} \ MgS$

Oxidation and reduction also occurs in molecular substance that don't have a charge. These compounds use covalent bonds

 $\overset{\not 0}{2H_2} + \overset{\not 1}{O_2} \xrightarrow{\uparrow 1} \overset{-2}{2H_2O}$

Hydrogen is oxidized by bonding with oxygen due to <u>partial loss</u> of electrons.

OXIDATION NUMBERS

Ionic compound: NaCl → Na⁺¹ and Cl⁻¹

Molecular Compound: $H_2O \rightarrow H^{+1}, H^{+1}, O^{-2}$

A	Mg + S	→ MgS
	Oxidation	Reduction
Los	ss of Electrons	Gain of Electron
Ga	ain of Oxygen	Loss of Oxygen
Increa	se in Oxidation #.	Decrease in Oxidation #.
Mg	ı → Mg²+ + 2 ^{e.}	S + 2 ^{e-} → S ²⁻
Redu	icing Agent = Mg	Oxidizing Agent = S

Oxidation Number Changes In Chemical Reactions

- An increase in the oxidation number of an atom signifies oxidation.
- A decrease in the oxidation number of an atom signifies reduction.
- It is possible for the same atom to oxidize and reduce.

Classes of Reactions

- All other reactions in which electrons <u>are not</u> transferred.
- <u>Redox Reactions</u>: where electrons are transferred.

Determining Redox Reactions

- Find oxidation numbers.
- See if they change?
- If they change, then it is a redox reaction.

Identifying Redox RXNS

- Double replacement reactions and acid-base reactions are not redox reactions.
- Most other reactions are redox!
- Use oxidation numbers to determine if its a redox reaction.

- <u>Redox</u>: many single replacement, combination, decomposition, and combustion reactions.
- Double replacement and acid-base reactions are <u>not</u> redox reactions.

- Rules for oxidation number change method of balancing redox reactions
- MEMORIZE!!!
- Page 648

Oxidation Number Change Method for Balancing Redox Reactions

Step 1: Assign Ox Numbers

Step 2: Determine what is oxidized and reduced

Step 3: Use bracketed line to connect atoms undergoing oxidation and reduction and write the oxidation change on the line.

• Determine least common multiple between oxidation number change and reduction number change.

Step 4: Place coefficients into the equation to reach the <u>number multiplied</u> to get the least common multiple.

Step 5: Make sure the entire equation is balanced.

$$-Mg + N_2 \longrightarrow Mg_3N_2$$
$$-Fe + O_2 \longrightarrow FeO$$

Hon Chem 20.notebook

 $_PbS+_O_2 \longrightarrow _PbO + _SO_2$

 $_C_2H_6+_O_2 \longrightarrow _CO_2+_H_2O$

Balancing Net Ionic Redox Reactions $Cu + 4HNO_3 \rightarrow Cu(NO_3)_2 + 2NO_2 + 2H_2O$ $Cu + 4H' + 4NO_3^- \rightarrow Cu^{2+} + 2NO_3^- + 2NO_2 + 2H_2O$

Balancing Example Write the 2 Half-Reactions			
$AI + O_2 \rightarrow AI_2O_3$			
$AI \rightarrow 2AI^{3+} + 6e^{-}$			
$O_2 + 4e^- \rightarrow 3O^{2-}$			

40 Multiple Choice

- 3 Balancing with Oxidation Change Method
- 2 Balancing with Half-Reaction Method