Chapter 22-23 Hydrocarbons

Hydrocarbons

Simple organic compounds

Contain carbon and hydrogen

Carbon forms <u>4 covalent bonds</u>

Carbon atoms have <u>4 valence</u> electrons

Hydrogen forms 1 covalent bond

H H H	Moleo Formu
H—Ċ—Ċ—Ċ—H 	CH ₄ C ₂ H ₆ C ₃ H ₈ C ₄ H ₁₀
CH₃CH₂CH₃	C ₄ H ₁₄ C ₇ H ₁₆ C ₄ H ₁₈ C ₉ H ₂₀ C ₁₀ H ₂

Molecular Formula	Condensed Structural Formula	Name	Boiling Point (°C)
CH ₄	CH ₄	Methane	-161
C_2H_6	CH ₃ CH ₃	Ethane	-89
C_3H_8	CH ₃ CH ₂ CH ₃	Propane	-44
C_4H_{10}	CH ₃ CH ₂ CH ₂ CH ₃	Butane	-0.5
C_5H_{12}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	Pentane	36
C_6H_{14}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Hexane	68
C_7H_{16}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Heptane	98
C_8H_{18}	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Octane	125
C9H20	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	Nonane	151
$C_{10}H_{22}$	CH3CH2CH2CH2CH2CH2CH2CH2CH2CH3	Decane	174

Physical State of Alkanes

- Methane, ethane, propane, & butane are all gases at room temperature. They are only liquids when pressurized.
- They become liquids starting with pentane
- Solid alkanes do not appear until C₁₇H₃₆
- Cycloalkanes have higher boiling points than straight chain version
- Branched alkanes have lower boiling points than straight chain

Types of Structural Formulas

Expanded Structural formula	н н-с-н н	Н Н Н-С-С-Н I I Н Н	Н Н Н Н-С-С-С-Н Н Н Н
Condensed Structural formula	CH ₄	СН3−СН3	СН ₃ —СН ₂ —СН ₃
	Methane	Ethane	Propane

Line Formulas

Straight Chain vs. Branched Chain

Are the carbons lined up in a single line or do carbon atoms branch off of the parent chain?

Naming Branched-Chain Alkanes

<u>Parent Chain</u>: The longest continuous chain of carbon atoms in a hydrocarbon

<u>Substituent Groups</u>: a side branch off the parent chain that substitutes for a hydrogen atom.

Functional Groups

- They are substituent groups of atoms attached to the carbon backbone of organic molecules.
- The same functional group will undergo the same, or at least similar, chemical reaction regardless of the overall size of the molecule.

5 carbon pentane chain a methyl group is attached

Methyl Alkyl Group

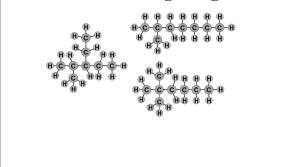
Methyl group

Ethyl Alkyl Group

Propyl Alkyl Group

Hydroxyl Functional Group

Amine Functional Group


IUPAC Naming Process

(International Union of Pure and Applied Chemistry)

- 1. Find the parent chain and name it bases on the carbon atoms.
- Number the carbons in the parent chain. The carbon closest to the substituent group is always carbon 1.
- Name each alkyl group substituent. 3.
- Use prefixes to indicate how many times the substituent group appears. (di-, tri-, tetra-)
- If there are different alkyl groups on the same parent chain, they should be listed in alphabetical order Hyphens separate numbers from words and commas separate numbers

IUPAC Naming Process

Name the Following using IUPAC

Name the Following using IUPAC

Cyclic Alkanes

Cycloalkanes are when 3 or more carbons are in a ring structure held together by single bonds.

Cycloalkanes have 2 fewer hydrogen atoms that straight chained alkanes due to the carbon's on the end forming C-C bonds.

Naming Cycloalkanes

Saturated vs. Unsaturated Hydrocarbons

- Determined by the number of hydrogen atoms present in a hydrocarbon.
- The number of <u>double and triple bonds</u> between the carbon atoms changes the number of hydrogen atoms present

Alkenes

- Unsaturated Hydrocarbons that have one or more <u>double</u> bonds between carbon atoms.
- Carbons are unsaturated with Hydrogen atoms

Ethene
$$\stackrel{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}}{\overset{\text{H}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}}}{\overset{\text{H}}$$

Naming Alkenes

It is very similar to naming alkanes, however, you must identify the location of the double bond. The location of double bond is priority.

Is 3-butene possible?

Name the Following using IUPAC

Alkynes

- Unsaturated Hydrocarbons that have one or more <u>triple</u> bonds between carbon atoms.
- Carbons are unsaturated with Hydrogen atoms

Ethyne
$$H-c\equiv c-H$$

Propyne $H-c\equiv c-H$

H

Butyne $H-c\equiv c-H$

Name the Following using IUPAC

Name the Following using IUPAC

Isomers

Two or more compounds that have the same molecular formula but different molecular structure.

Structural Isomers

Two or more compounds that have the same molecular formula but are bonded in a completely different order, therefore changing its properties.

Structural Isomers of Pentane