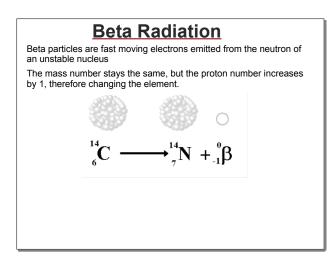
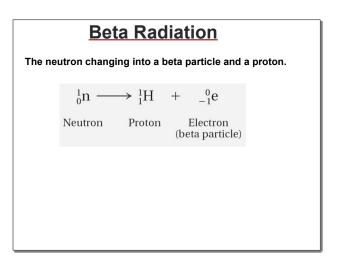

Types of Radiation

During radioactive decay, unstable atoms lose energy by emitting one of several types of radiation.

The 3 most common types are:


- 1. Alpha
- 2. Beta
- 3. Gamma



Characteristics of Some Types of Radiation						
Property	Alpha radiation	Beta radiation	Gamma radiation			
Composition	Alpha particle (helium nucleus)	Beta particle (electron)	High-energy electro- magnetic radiation			
Symbol	α, ₂ He	β, _1e	γ			
Charge	2+	1-	0			
Mass (amu)	4	1/1837	0			
Common source	Radium-226	Carbon-14	Cobalt-60			
Penetrating bower	Low (0.05 mm body tissue)	Moderate (4 mm body tissue)	Very high (penetrates body easily)			
Shielding	Paper, clothing	Metal foil	Lead, concrete (incompletely shields			

Alpha Radiation Alpha radiation consists of helium nuclei that have been emitted from a radioactive source. These emitted particles, called alpha particles , contain two protons and two neutrons and have a double positive charge.							
²³⁸ 92 Hadioacti 92 decay	$\xrightarrow{\text{ve}}$ $\xrightarrow{234}_{90}$ Th +	${}_{2}^{4}$ He (α emission)					
Uranium-238	Thorium-234	Alpha particle					

Gamma Radiation

A high-energy photon emitted by a radioisotope is called a **gamma ray.** The high-energy photons are electromagnetic radiation.

The emission of gamma rays does not change the mass number or the atomic number.

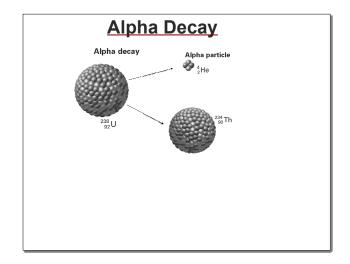
Alpha and/or beta radiation usually accompany gamma rays

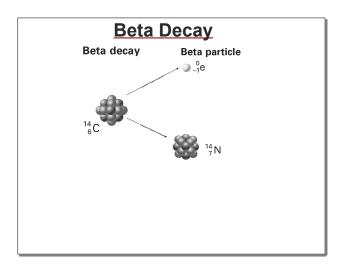
²³⁰ ₉₀ Th	\longrightarrow	²²⁶ ₈₈ Ra	+	⁴ ₂ He	+	γ
Thorium-230		Radon-226		Alpha particle		Gamma ray

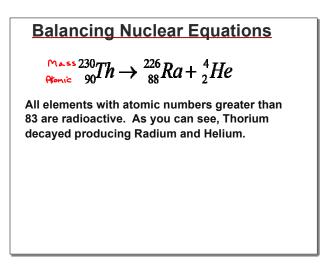
Nuclear Stability

Nucleons: protons and neutrons

The stability of a nucleus can be correlated to the neutron:proton ratio.


Atoms that do not have the proper ratio may undergo radioactive decay to achieve stability.


All atoms with atomic number greater than 83 are considered radioactive.


Types of Radioactive Decay

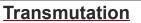
Alpha Decay: All nuclei with more than 83 protons

- The neutrons and protons must decrease to achieve a stable nuclei.
- Beta Decay: Occurs when a radioisotope has too many neutrons
- Carbon-14 has too many neutrons, therefore undergoes beta decay and becomes a stable nitrogen atom.

Complete the Following

$$_ \rightarrow \frac{^{181}}{_{77}}Ir + \frac{^{4}}{_{2}}He$$

$$\frac{^{230}}{_{84}}Po \rightarrow \frac{^{4}}{_{2}}He + _$$

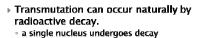

$$_ \rightarrow \frac{^{222}}{_{86}}Rn + \frac{^{4}}{_{2}}He$$

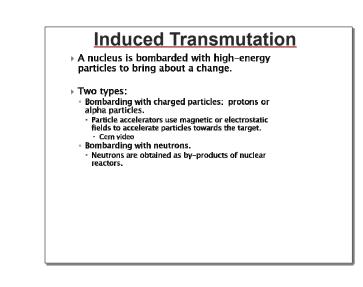
Complete the Following

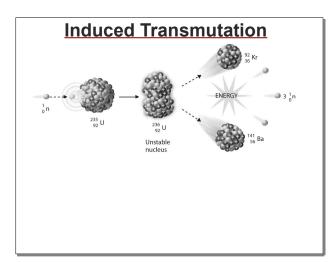
$$^{184}_{74}W \rightarrow ___ + ^{184}_{75}Re$$

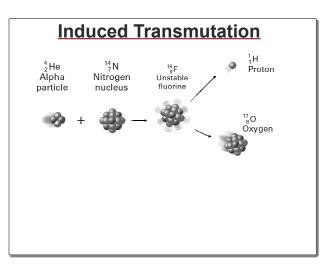
 $___ \rightarrow _^{0}_{1}e + ^{120}_{51}Sb$
 $^{42}_{20}Ca \rightarrow _^{0}_{1}e + ___$

Hon Chem 25.notebook


Complete the Following


The conversion of an atom of one element into an atom of another element.


Occur in two ways:


- 1. Induced Transmutations
- 2. Radioactive Decay

- Transmutation can also occur artificially when particles bombard the nucleus of an atom.
- $\,\circ\,$ at least two reactants produce the target material

Hon Chem 25.notebook

Transuranium Elements

The elements following uranium on the periodic table Have atomic numbers of 93 and greater.

Produced in the laboratory by induced transmutation

Transuranium Elements

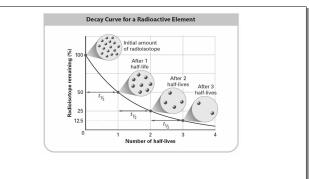
 ${}^{238}_{92}\mathrm{U} + \mathrm{n} \rightarrow {}^{239}_{92}\mathrm{U} \rightarrow {}^{239}_{93}\mathrm{Np} + \mathrm{e}^-$

Radioactive Decay Rates

All radioactive isotopes are continuously unergoing radioactive decay.

Half-life is used to measure radioactive decay.

Stable atoms have a long half-life Unstable atoms have a short half-life.


Using Half-Life

The time required fo one-half of a radioisotopes nuclei to decay into products.

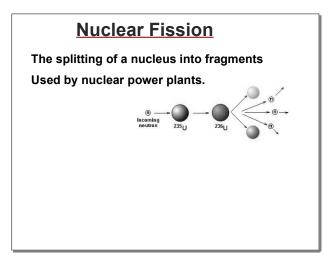
The half-life of Strontium-90 is 29 years.

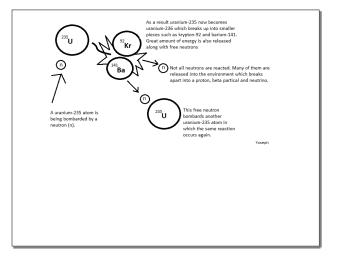
Using Half-Life

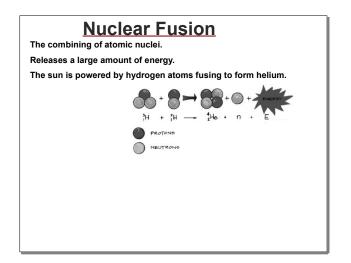
- If a 100 g sample has a half-life of 5 days:
- After 5 days ½ (50g) will remain undecayed
 After 10 days ¼ (25g) will remain undecayed
- After 10 days # (25g) will remain undecayed
 After 15 days 1/8 (12.5g) will remain undecayed
- · After 20 days 1/16 (6.25g) will remain undecayed
- And so on...

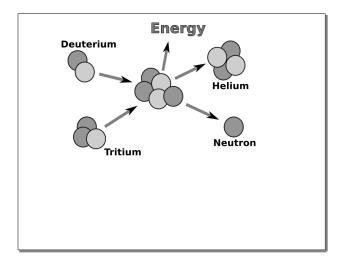
Calculating Half-Life

The half-life of Strontium-90 is 29 years. Given 355.0-g, how much Strontium-90 remains after 116 years has passed?


(t=time elapsed, T=half life)


amount remaining = initial mass(1/2)^{t/T}


Calculating Half-Life


The half-life of Iron-59 is 44.5 days. How much of a 2.0 mg sample remains after 133.5 days.

amount remaining = initial mass(1/2)^{t/T}

