Chemical Nomenclature

Naming Ions

Monatomic Ions:

• a single atom with a positive or negative charge

Polyatomic Ions:

• two or more atoms with a positive or negative charge

Cation (rules): listed first

Anion (rules): -ide ending

Polyatomic Ions

- Polyatomic ions are tightly bound groups of atoms that behave as a unit and carry a charge.
- -ite or -ate means oxygen is involved.

Binary Ionic Compounds

- Binary compounds are composed of two elements.
- The positive charge of the cation must exactly balance the negative charge of the anion

Naming Binary Ionic Compounds

- Two elements only
- -ide ending
- Stock System
- Roman numerals used on an "as needed" basis

Writing Names from Formulas			
Li ₃ N	ScF ₃		
$\mathrm{Mg_3P_2}$	Al ₂ S ₃		

Writing Formulas from Names				
Scandium iodide	Silver phosphide			
Barium arsenide	Potassium oxide			

Polyatomic vs. Monoatomic

- Must be named differently!!!!
- Monoatomic anions always end with –ide.
- Polyatomic anions end with -ide, -ite, or -ate.
- Always look for a polyatomic ion when naming compounds.

Compounds with Polyatomic Ions

- Ionic compounds containing three or more different elements
- Parentheses used as needed

Writing Names from Formulas CaSO₄ Al(NO₃)₃ Rb₂C₂O₄ KH₂PO₄

Sodium dichromate Sodium dichromate Gallium acetate Zinc permanganate Strontium phosphite

Naming Multi-Valent Metals

- When these have a variable charge, the Stock system or classic name system is used.
- Variable charges exist for certain transition metals that lose a varying number of electrons.

Stock System

- Transition metals with variable charge.
- Roman numerals identify the charge.
- $Cu^+ = Copper(I), Cu^{2+} = Copper(II)$
- $Pb^{2+} = Lead (II), Pb^{4+} = Lead (IV)$
- $Fe^{2+} = Iron (II), Fe^{3+} = Iron (III)$
- $Au^+ = Gold(I), Au^{3+} = Gold(III)$

Classic Name System

- Transition metals with variable charge.
- Latin name is used for each version. (-ous or -ic endings)
- $Cu^+ = Cuprous$, $Cu^{2+} = Cupric$
- Pb²⁺ = Plumbous, Pb⁴⁺ = Plumbic
- $Fe^{2+} = Ferrous$, $Fe^{3+} = Ferric$
- $Au^+ = Aurus$, $Au^{3+} = Auric$

Writing Formulas from Names

Chromic sulfite	Cobalt (II) perchlorate
Stannic carbonate	Gold (I) phosphate

Writing Names from Formulas

MnSO ₃	HgClO ₂
Ni ₂ (Cr ₂ O ₇) ₃	V_2O_5

Naming Ionic Compounds

- Identify the polyatomic ion or monoatomic ion
 (-ide, ite, -ate)
- Is there a metal with variable charge? What is charge?
 (Stock & Classic)

Calcium nitrate	Manganese (II) phosphate
Al ₂ (CO ₃) ₃	Pb(SO ₄) ₂

SnC ₂ O ₄ Au(ClO ₃) ₃

Molecular Compounds Naming and Writing Formulas

- Composed of two nonmetallic elements
- Ionic charges not used
- Use table of prefixes (must memorize)
- -ide ending always

Nonmetals

Carbon Silicon Oxygen Chlorine Fluorine Nitrogen Bromine Iodine Selenium Sulfur Phosphorus Hydrogen

Writing Molecular Formula

- A molecular formula shows the number and kinds of atoms present in a molecule of a compound.
- Since their is no cation, which is listed first?
 - > Carbon always first
 - > The more electronegative element is last

Table of Prefixes		
1 = Mono-	6 = Hexa-	
2 = Di-	7 = Hepta-	
3 = Tri-	8 = Octa-	
4 = Tetra-	9 = Nona-	
5 = Penta-	10 = Deca-	

- C₂H₄
- S₃O₆
- H₂O
- CO
- CO₂

Acids & Bases

<u>Acids</u>: compound containing hydrogen atoms producing H⁺ when dissolved in water.

<u>**Bases:**</u> compound producing OH- when dissolved in water.

Naming and Writing Formulas for Acids

Acids are a group of compounds that are given special treatment in naming

- MEMORIZE the 3 rules.
- Stem: the root of the element
 - > **Phosphorus:** phosph or phosphor
 - > **Sulfur:** sulf or sulfur
 - > **Nitrogen:** nitr
 - > Chlorine: chlor

Naming Acids: Rule #1

-ide ending (HCl, HF, HBr)

Monoatomic anion

Hydro- (stem)- ic

HCl:

HF:

HBr:

H₃P:

Naming Acids: Rule #2

- Polyatomic anion with -ite ending
- (Sulfite, Nitrite, Phosphite)
- (stem)- ous

H₂SO₃:

HNO₂:

H₃PO₃:

HClO₂:

Naming Acids: Rule #3

- Polyatomic anion with -ate ending
- (Sulfate, Nitrate, Phosphate)
- (stem)- ic

H ₂ SO ₄ :			
HNO ₃ :			
H ₃ PO ₄ :			
HClO ₃ :			

4 step Naming Process

- 1. Is there a Polyatomic Ion? (Ionic or Acid)
- 2. Is there a Metal? (Yes = Ionic)
 - Fixed or Variable charge
- 3. Is Hydrogen at beginning? (If so, its an acid.)
- 4. If not an Acid or Ionic...

 Use prefixes, its molecular

When naming Formulas...

- 1. lonic (Metal present)
- 2. Molecular (Nonmetals only)
- 3. Acids (Begins with hydrogen)

exceptions: H2O H2O2 (Molecular)

5 Big Mistakes in Naming

- 1. Charge mistakes, which lead to formula mistakes
- 2. Does it end in...-ide, -ite, or -ate
- 3. Metals with variable and fixed charges
- 4. Recognizing polyatomic ions
- 5. Using prefixes incorrectly

Must Memorize for Test

- 22 Polyatomic Ions
- 10 Prefixes used in molecular compounds
- -ous and -ic endings
- Acid naming rules