<u>Chapter 9</u> Molecular Compounds & Covalent Bonding

9.1 Why do covalent bonds form?

- If only the nonmetals in groups 5A, 6A, & 7A existed, ionic bonds couldn't form.
- The atoms in those groups need electrons so they are not willing to lose any.
- If two Hydrogen atoms are locked in a room together, how would they become stable?

What is a Molecule?

- Neutral group of atoms joined together by covalent bonds.
- Several atoms and several covalent bonds can be present in a molecule, unlike the formula unit of an ionic compound.
- Atoms are attached by more than just electrical attraction.

Diatomic Molecules

- a molecule consisting of two identical atoms
- There are 7: must memorize (Hint: Starts at 7, makes a 7)
 - > H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂
- These are elemental compounds that are more stable as a compound than by themselves.

Molecular Formula

Chemical formula for molecular compounds.

Shows the type of atoms and the the number of atoms.

Subscripts are not always in lowest whole number ratio.

• Ionic compounds are in lowest whole number ratio called formula units.

 $\mathsf{C}_{\mathsf{4}}\,\mathsf{H}_{\mathsf{6}}$

Does not give the structure or shape of the molecule

Properties of Molecular Compounds

- Lower melting and boiling points than ionic compounds.
- Most are gases or liquids at room temperature.
- Poor conductors of electricity
- Why do you think they possess these properties?

<u>Ionic vs. Covalent</u>		
<u>Formula Unit</u>	<u>Molecule</u>	
Transfer electrons	Share electrons	
Metal - Nonmetal	Nonmetal-Nonmetal	
Solid Crystals	Solid, liquid, gas	
Good electrical conductor	Poor electrical conductor	
High melting point	Low melting point	

Gilbert Lewis Stated

- Sharing of electrons occurs if the atoms involved acquire the electron configurations of noble gases.
- Stable by sharing instead of losing or gaining electrons.
- Unpaired vs. Paired Electrons are significant in bonding

Element	Electron Distribution (Show Boxes)	Dot Structure	Electrons needed	Unpaired Eelctrons
Oxygen				
Nitrogen	1s ² 2s ² 2p ³			
Carbon	$1s^2 2s^2 2p^2 \Box \Box \Box$			
Carbon	1s ² 2s ¹ 2p ³			

<u>Carbon's Dot Structure Unique</u>
• It is slightly different when 2 carbon atoms form covalent bonds.
• A covalent bond is formed by the <u>unpaired electrons</u> of two atoms, but Carbon only has 2 unpaired electrons
• Carbon needs 4 more electrons, so it needs 4 unpaired electrons.
• $1s^22s^12p^3$, not $1s^22s^22p^2$ † † † † †

Bonding Rules

<u>Nitrogen</u>: 3 unpaired electrons needs 3 electrons to be stable must form 3 covalent bonds

<u>Fluorine</u>: 1 unpaired electron needs 1 electron to be stable must form 1 covalent bond

Bonding Rules Carbon: 4 unpaired electrons needs 4 electrons to be stable must form 4 covalent bonds

<u>Oxygen</u>: 2 unpaired electrons needs 2 electrons to be stable must form 2 covalent bonds

Unshared Pairs

- The pairs of valence electrons that are not shared between atoms are called <u>unshared pairs</u> of electrons, or unshared pairs.
- They are also called lone pairs or nonbonding pairs.
- These are extremely important in determining the shapes of molecules, never leave them out.

<u>Sigma Bonds</u>

- Single Covalent Bonds (Greek letter: \mathbf{O})
- When electrons are shared, the valence orbitals of one atom
 <u>overlap</u> the valence orbital of the other atom. (Strong bonds)
- The bonding orbital is the region between the two atoms in which the shared electrons are likely to be found.
- Can be s/s, s/p, or p/p orbitals overlapping.
- The bond is being pulled straight toward the central atom.

Multiple Covalent Bonds

Single	Double	Triple
bond	bond	bond
H–H	0=0	N≡N
H:H	• ़ंः: •़•	Ň₩Ň

More Multiple Covalent Bonds		
H₂O	CH₄	

Strength of Covalent Bonds

- Several factors control the strength of covalent bonds.
 - > Remember: the nuclei of bonded atoms are attracted to each other's electrons but repelling their nuclei.
- Bond Length is the most important factor: the distance that separates the bonded nuclei. (Shorter is stronger)
 - > Bond length decreases with more shared electrons.
 - > Triple bonds are strongest, single bonds are weakest.

Bond Dissociation Energy

The amount of energy required to break a covalent bond, It is different for all compounds.

In a chemical reaction, bonds are broken and formed.

- Endothermic: reactions in which more energy is required to break the bonds of the reactants than is released when bonds form.
- Exothermic: reactions in which more energy is released forming new bonds than is required to break the bonds of the reactants.

9.3 Molecular Structures

Lewis Dot Formulas: show which atoms are pairing up to form bonds

Structural formulas: show the arrangement of atoms in molecules and polyatomic ions.

Dashes are used in structural formulas

- 1 dash: 2 shared electrons
- 2 dashes: 4 shared electrons
- 3 dashes: 6 shared electrons

Double and Triple Covalent Bonds

- Double covalent bonds involve two shared pairs of electrons.
 > Represented by 2 dashes
- Triple covalent bonds involve three shared pairs of electrons.
 - > Represented by 3 dashes

Resonance

- Resonance structures occur when two or more valid electron dot formulas can be written for a molecule.
- Differ in the position of the electron pairs, not the position of the atoms.
- Ex. O₃, CO₃²⁻
- Same formula but different structure due to the locations of the electron pairs.

9.4 Molecular Shape

- VSEPR theory states that because electron pairs repel, molecules adjust their shapes so that the valence-electron pairs are as far apart as possible.
- Valence Shell Electron Pair Repulsion.
- Bond angles are created by this repulsion of electrons

More about shapes...

- Molecules are 3 dimensional.
- Molecular shape is determined by the number of bonds formed and by the unshared pairs of electrons.
- Each shape has a specific bond angle.

Bond Angles

- Tetrahedral = 109.5° (sp³ hybridization)
- Linear = 180° (sp hybridization)
- Bent = 104.5° (sp³ hybridization)
- Tigonal Pyramidal = 107.3° (sp³ hybridization)
- Trigonal Planar = 120° (*sp*² hybridization)

9.5	Electrone	Q	ativity	and	Po	larit	V
		-					_

- Ability of atoms to attract electrons.
- Determines the reactivity and strength of polar covalent bonds.

F= 4.0	Br = 2.8
O = 3.5	l = 2.5
N = 3.0	C = 2.5
CI = 3.0	S= 2.5
Hydrogen =	2.1

Polar Covalent Bonds

- When two different atoms are joined by a covalent bond and the bonding electrons are shared <u>unequally</u>
- The atom with stronger electronegativity in a polar bond acquires a slightly negative charge. The less electronegative atom acquires a slightly positive charge.
 Polar Bonds in a Water Molecule
- HCl: Moderately polar covalent
- HF: Very polar covalent (Reactive)

Dipolar Molecules

- In a polar molecule one end of the molecule is slightly negative and the other is slightly positive.
- Dipolar molecules (2 poles)
- Not every molecule with polar bonds is dipolar.
- Ionic compounds are soluble in polar molecules.
- Ex.) HCl,H₂O, HF

Nonpolar Molecules

- When a molecule has no difference in charge between opposite ends or sides of the molecule.
- Not very reactive since they are not dipolar
- H₂, F₂, CO₂, Cl₂, CCl₄
- Water is only polar due to it's shape

Attractions Between Molecules

- In addition to covalent bonds in molecules, there are attractions between molecules, or <u>intermolecular attractions</u>
- Covalently bonded atoms attracted to each other.

Gases	Liquids	Solids
No attraction	Dipole Attraction	Ionic Attraction
Nonpolar Molecules	Polar Molecules	Ions Form Crystals

Intermolecular Attractions (Between)

These are what hold molecules together.

- Weaker than either an ionic or covalent bond.
- They are responsible for whether a molecular compound is a gas, liquid, or solid.

Van der Waals forces

- The weakest attractions between molecules. Not Bonds!!!!!!
- Three types are Dispersion forces, Dipole interations, and Hydrogen bonds
- Hydrogen > Dipole > Dispersion
 - Attractions between polarized molecules

Dispersion Forces

- The weakest of all intermolecular interactions.
- Thought to be caused by the motion of electrons, and remember, electrons are always moving.
- Strength of dispersion forces increases as the number of electrons in a molecule increases
- · Electrons are not lost or gained

London Dispersion Forces

London dispersion forces are attractions between an instantaneous dipole and an induced dipole.

m 1 Hel

Hydrogen Bonds

- <u>Strongest</u> of all intermolecular attractions. <u>Must involve hydrogen</u>!
- Dipole interactions with hydrogen.
- An atom or molecule is attracted to a Hydrogen atom that is already bonded to an atom with high electronegativity.
- The covalently bonded hydrogen becomes slightly positive.
- Unshared electron pairs and atoms with high electronegativity become attracted to the slightly⁽⁺⁾ Hydrogen.

Why is there so much water?

Water molecules are polar.

- The oxygen atom becomes slightly negative and each hydrogen becomes slightly positive.
- This causes an intermolecular attraction between water molecules.
- The attraction water molecules have for one another is called Hydrogen bonding.

Hydrogen Bonding in Water

Properties of Molecular Substances

- The physical properties of a compound depend on the type of bonding it displays.
- Ionic or Covalent

Network Solid

- All of the atoms are covalently bonded to each other. (Crystals)
- No intermolecular attractions.
- Most stable type of molecule.
- Very high melting point.
- Ex.) Diamonds

