
Answer Key

Chapter 10 Review

(Honors Chemistry)

- Identify the reaction type in the space provided.
 Predict the products given the reactants
 Balance the equation

Balance the Equation	Type of Reaction
$\underline{\hspace{0.1cm}}$ Zn + $\underline{\hspace{0.1cm}}$ CuSO ₄ \rightarrow $\underline{\hspace{0.1cm}}$ Cu + $\underline{\hspace{0.1cm}}$ ZnSO ₄	Single Replacement
	Double Replacement
2 Na + 1 F ₂ \rightarrow 2 NaF	Synthesis
$2 \text{ HNO}_3 + \text{Mn(OH)}_2 \rightarrow \text{Mn(NO}_3)_2 + $	Double Replacement
\bot $F_2 + \bot$ $MgI_2 \rightarrow \bot$ $MgF_2 + \bot$ I_2	Single Replacement
	Single Replacement
$2 \text{HCN} + 1 \text{CuSO}_4 \rightarrow 1 \text{Cu(CN)}_2 + 1 \text{H}_2 \text{SO}_4$	Double Replacement
$2 Ga2O3 \rightarrow 4 Ga + 3 O2$	Decomposition
	Single Replacement
	Combustion
$3 \text{ HNO}_3 + \text{Fe(OH)}_3 \rightarrow \text{Fe(NO}_3)_3 + 3 \text{ H}_2\text{O}$	Double Replacement
	Decomposition
$2 \text{AgNO}_2 + 1 \text{BaSO}_4 \rightarrow 1 \text{Ba(NO}_2)_2 + 1 \text{Ag}_2 \text{SO}_4$	Double Replacement
	Single Replacement
	Double Replacement
$2 C_6 H_{14} + 19 O_2 \Rightarrow 12 CO_2 + 14 H_2O$	Combustion
LiNO ₃ +Fe → No Reaction	No Reaction
	Synthesis
	Single Replacement
	Decomposition

Identify the reaction type in the space provided.
 Write a balanced equation for each of the following reactions.
 Include the state of each reactant and product. Also, identify if a catalyst was used.

Balanced Equation	Type of Reaction
 Solid glucose (C₆H₁₂O₆) reacting with Oxygen gas C₆H₁₂O₆ (s) + 6 O₂ (g) → 6 CO₂ (g) + 6 H₂O (l) 	Combustion
2. Solid lithium reacts with Chlorine gas 2 Li (s) + Cl₂ (g) → LiCl (s)	Synthesis
3. Solid potassium reacts with aqueous cupric nitrate 2 K(s) + Cu(NO ₃) ₂ (aq) → Z KNO ₃ (aq) + Cu (s)	Single Replacement
4. Aqueous sodium sulfate and aqueous barium nitrate react to form a precipitate	Double Replacement
5. Solid Calcium oxide and liquid water react to produce an aqueous substance CaO (s) + H₂O (l) → Ca(OH)₂ (aq)	Synthesis
6. Solid Aluminum oxide decomposes into a solid and a gas 2 Al₂O₃ (s) → 4 Al (s) + 3 O₂ (g)	Decomposition
7. Liquid pentane (C ₅ H ₁₂) combusts when heat is added C ₅ H ₁₂ (l) +SO ₂ (g) →	Combustion

Balanced Equation	Type of Reaction
8. Chlorine gas reacts with an aqueous potassium bromide solution Cl ₂ (g) + 2 KBr (aq) > 1 Br ₂ (l) + 2 KCl (aq)	Single Replacement
9. Sodium oxide reacts with water to produce a base Na ₂ O (s) +	Synthesis
10. Aqueous aluminum nitrate and aqueous sodium hydroxide react to form a precipitate Al(NO ₃) ₃ (aq) + 3 NaOH (aq) > 3 NaNO ₃ (aq) + 1 Al(OH) ₃ (s)	Double Replacement
11. Ethanol (C ₂ H ₆ O) reacts with the oxygen in the air	Combustion
12. Solid Mercuric oxide breaks down when heated $ \frac{2}{2} \text{HgO (s)} \Rightarrow \frac{2}{2} \text{Hg (s)} + \frac{1}{2} \text{O}_2(g) $	Decomposition
13. Nitrogen gas reacts with solid zinc metal	Synthesis
14. Phosphoric acid and lithium hydroxide react H ₃ PO ₄ (aq) + 3 LiOH (aq) > Li ₃ PO ₄ (aq) + 3 H ₂ O (l)	Double Replacement
15. Magnesium reacts with the oxygen in the air 2 Mg (s) + 1 O₂ (g) → 2 MgO (s)	Synthesis Combustion