NEUTRALIZATION REACTIONS For the following acid-base reactions, write a balanced chemical equation and solve. 1. How much 2.0 M H₂SO₄ is needed to neutralize 1.0-L of 2.0 M NaOH? $$H_2SO_4 + 2NaOH \longrightarrow 2H_2O + Na_2SO_4$$ 2. How much 5.0 M H₂SO₄ is needed to neutralize 1.0-L of 2.0 M NaOH? $$\frac{1 \text{ mol H}_2SQ_2 \text{ needed}}{5.0 \text{ mol H}_2SQ_4} = \frac{2 - 1 \text{ of } 5.0 \text{ m H}_2SQ_4}{5.0 \text{ mol H}_2SQ_4}$$ 3. If 1.0-L of H_2SO_4 is needed to neutralize 1.0-L of $2.0\,M$ NaOH, what is its concentration? * 1 mol needed 4. If 4.0-L H₂SO₄ is needed to neutralize 1.0-L of 2.0 M NaOH, what is its concentration? 5. How much 2.0 M HCl is needed to neutralize 0.5-L of 5.0 M Ca(OH)₂? $$2 HCI + Ca(OH)_2 \rightarrow 2 H_2O + CaCl_2$$ 6. How much 1.0 M HCl is needed to neutralize 0.5-L of 5.0 M Ca(OH)₂? 7. If 1.5-L of HCl is needed to neutralize 1.0-L of 5.0 M Ca(OH)₂, what is its concentration? 8. If 10.0-L of HCl is needed to neutralize 0.5-L of 5.0 M Ca(OH)₂, what is its concentration? 9. How much 2.0 M H₃PO₄ is needed to neutralize 0.5-L of 5.0 M KOH? H₃PO₄ + $$3$$ KOH \rightarrow 3 H₂O + K₃PO₄ 2.5 mol KOH | 1 mol H₃PO₄ = $\frac{3}{83}$ mol needed | $\frac{83}{2}$ mol | $\frac{1}{10}$ = $\frac{415-L}{10}$ of 2.0 M H₃PO₄ 10. How much 1.0 M H₃PO₄ is needed to neutralize 0.5-L of 5.0 M KOH? 11. If 1.5-L of H_3PO_4 is needed to neutralize 1.0-L of 5.0 M KOH, what is its concentration? 12. If 10.0-L of H₃PO₄ is needed to neutralize 0.5-L of 5.0 M KOH, what is its concentration?