Titrations Practice Worksheet

Honors Chemistry

HCl + NaOH > NaCl + H2O

1. If it takes 54-mL of 0.1-M NaOH to neutralize 125-mL of an HCl solution, what is the concentration of the HCl?

.054-L . I mol NaOH _ .0054 mol NaOH | mol HC| _ .0054 mol HC| _ .043-M | HC| HC|

2. If it takes 25-mL of 0.05-M HCl to neutralize 345-mL of NaOH solution, what is the concentration of the NaOH solution?

.025-L HC1 .05 mol .00125 mol HC1 | 1 mol NaOH . 00125 mol NaOH | 1 mol HC1 .345-L

3. If it takes 50-mL of 0.5-M KOH solution to completely neutralize 125-mL of sulfuric acid solution (H_2SO_4), what is the concentration of the H_2SO_4 solution? $H_2SO_4 + 2KOH \rightarrow K_2SO_4 + 2H_2O$

.05-L KOH | .5 mol | .025 mol KOH | 1 mol H2SO4 .0125 mol H2SO4 . 125-L .1-M H2SO4

4. Can I titrate a solution of unknown concentration with another solution of unknown concentration and still get a meaningful answer? Explain your answer in a few sentences.

No! You must know at least one concentration to determine moles so that stoichiometry can be done.

5. Explain the difference between an endpoint and equivalence point in a titration.

Equivalence Point: [H+] = [OH-]

End Point: the indicator changes color

6. 60-ml of 1.2-M NaOH is required to titrate 40-ml of HF. What is the Molarity of the HF?

HF + NaOH -> NaF + H2O

1.2 mol x .06-L = .072 mol NaOH | 1 mol HF = .072 mol HF = 1.8-M | 1 mol NaOH = .04-L = 1.8-M

HCI + NaOH -> NaCI + H2O

7. What volume of 0.40-M NaOH (in mL) would be required to titrate 100-ml of 0.25-M HCI?

$$V = \frac{mol}{M} = \frac{.025 \text{ mol HCI}}{.4-M} = \frac{.025 \text{ mol NaOH}}{|-0625-L|} = \frac{.025 \text{ mol NaOH}}{|-0625-$$

8. 40-ml of 0.1-M H₃PO₄ are required to titrate 150-ml of NaOH to the equivalence point. What is the Molarity of the H3POy + 3NaOH -> Naz Poy + 3HOH

9. 55-ml of 1.2-M H C_2H_3 \bigcirc_2 are used to titrate a sample of 0.67-M Ba(OH)₂. What is volume (in mL) of the Ba(OH)₂ used?

2 HCzH₃O₂ + B₄GH)₂
$$\rightarrow$$
 Ba (CzH₃O₂)₂ + ZHOH

1. 2 mol \times .055-L = .066 nol HCzH₃O₂ | 1 mol Ba (aH)₂ \rightarrow .033 mol Ba (OH)₂

2 mol HCzH₃O₇ \rightarrow .055-L = .066 nol HCzH₃O₂ | 1 mol Ba (aH)₂ \rightarrow .033 mol Ba (OH)₂

10. 90-ml of 0.25-M Ca(OH)₂ are required to titrate 100-ml of HCl. What is Molarity of the UCl2

10. 90-ml of 0.25-M Ca(OH)₂ are required to titrate 100-ml of HCl. What is Molarity of the HCl?

11. 50-ml of 0.45-M Sr(OH)₂ are required to titrate a .75-M H₂SO₄ sample. What is the volume (in mL) of the H₂SO₄?

12. 30-ml of 0.3-M NaOH is required to titrate H₃PO₄ to the equivalence point. How many moles of H₃PO₄ are needed to H3POy + 3 NaOH -> Na3 Poy + reach the equivalence point?