Name ____

Answer Key _____

Using Electron Configurations to Understand Atoms

(Honors Chemistry)

Write the Electron Configurations for the following atoms and then answer the questions

Vanadium (23 electrons)

• $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$

1.	Highest full Energy level?	second
2.	Highest full sublevel?	4 s
3.	Highest occupied Energy level?	4 th
4.	Number of unpaired electrons?	3
5.	Number of empty orbitals?	2

Arsenic (33 electrons)

• 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p³

1.	Highest full Energy level?	third
2.	Highest full sublevel?	3d
3.	Highest occupied Energy level?	4 th
4.	Number of unpaired electrons?	3
5.	Number of empty orbitals?	0

Silver (47 electrons)

• $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^9$

1.	Highest full Energy level?	third
2.	Highest full sublevel?	5 s
3.	Highest occupied Energy level?	5 th
4.	Number of unpaired electrons?	1
5.	Number of empty orbitals?	0

Identify the elements described below:

•	$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^4$	Chromium
•	Contains the first d electron of any atom	Scandium
•	$1s^22s^22p^63s^23p^64s^23d^{10}4p^3$	Arsenic
•	Contains 1 electron in the 4s sublevel	Potassium
•	Contains 15 electrons in the 3 rd energy level,	but has 2 electrons in the 4 th energy level Cobalt
•	Contains the first p electron of any atom	Boron
•	$1s^2 2s^2 2p^6 3s^2 3p^3$	Phosphorus
•	Contains four electrons in its 2p sublevel	Oxygen

Explain why the 5s sublevel fills before the 4d sublevel begins to fill as electrons are added.

- **1.** The 5s is closer to the nucleus than the 4d.
- 2. The 5s has less energy than the 4d.
- 3. The 4th and 5th energy levels overlap each other.

Which sublevel(s) does Hund's Rule not apply to? Explain your answer.

The "s" sublevel because there is only one orbital. Hund's rule only applies to the p, d, & f sublevels because they have multiple orbitals with equal energy.