Copyright © Glencoc/McGraw-Hill, a division of the McGraw-Hill Companies.

The rate would quadru 11. A region rate can be express 12.5 is a second-order r	
9. What is the overall fraction of 10. Doubling the calcentration of doubled the incentration of	9. How would the reaction have differed if the steel wool was not heated? Not heating the steel wool would decrease the rate of the reaction.
7. What is the reaction order wit 8. What is the reaction order wit	8. Would the chemist have observed the same results if he used a block of steel instead of steel wool? Explain your answer. No; a block of steel would react more slowly because it has less surface area.
Answer the questions about the	concentration of a reactant increases the rate of a reaction.
	Answer the following questions. 7. A chemist heated a sample of steel wool in a burner flame exposed to oxygen in the air. He also heated a sample of steel wool in a container of nearly 100% oxygen. The steel- wool sample in the container reacted faster than the other sample. Explain why. There was a greater concentration of oxygen in the container. Increasing the
 The variable k in equation 2 is relates the reaction rate and the The variables m and n are the 	frue 6. Raising the temperature of a reaction increases the rate of the reaction by increasing the <i>energy</i> of the collisions between reacting particles.
reaction and the concentration rate law	true 5. Increasing the surface area of a reactant increases the rate of the reaction.
2. Equation 2 expresses the math	lowering 4. Catalysts increase the rates of chemical reactions by raising the activation energy of the reactions.
1. Equation 1 describes a	temperature 3. Increasing the concentration of a substance increases the kinetic energy of the particles that make up the substance.
Equation 1 Equation 2	true 2. A heterogeneous catalyst exists in a different physical state than the reaction it catalyzes.
reaction orders	Increasing 1. Decreasing the concentration of reactants increases the collision frequency between reacting particles.
chemical reaction	In the space at the left, write true if the statement is true; if the statement is false, change the italicized word to make it true.
Section 17.3 Reaction In your textbook read about rea Use each of the term below to co	Section 17.2 Factors Affecting Reaction Rates In your textbook, read about the factors that affect reaction rates (reactivity, concentration, surface, area, temperature, and catalysts).
C APTER (7)	CHAPTER (T) STUDY GUIDE FOR CONTENT MASTERY

DateClass
STUDY GUIDE FOR CONTENT MASTE Y
~~
our textbook, lead about reaction rate laws and determining reaction order. each of the term below to complete the statements.
nemical reaction rate law specific rate constant
action orders concentration time
Equation 1 $aA + bB \rightarrow cC + dD$
Equation 2 $-\frac{\Delta[A]}{\Delta r} = k[A]^m[B]^r$
Equation 1 describes a chemical reaction
Equation 2 expresses the mathematical relationship between the rate of a chemical
reaction and the concentrations of the reactar. This is known as the rate law
The variable k in equation 2 is the specific rate content , a numerical value that
relates the reaction rate and the concentration at a verteemperature.
The variables m and n are the reaction orders These define how the rate is
affected by the concentrations of the reactant
The square brackets [] representcocentration
The variable t represents the
wer the questions about the following rate law.
$R = k [A]^{1} [B]^{2}$
What is the reaction orde with respect to A? the exponent to A, first rder
What is the overall eaction order for the rate law? the sum of 1 and 2, or third order
Doubling the carcentration of A will cause the rate to double. What would happen if you doubled the ancentration of B ?
15.4
A readion rate can be expressed as Rate = $k[A]^2$. What is the reaction order for this reaction?
The is a second-order reaction.